
 
 

 
BG Research Online 
 

Callinan, C.J. (2014). Constructing Scientific Knowledge in the Classroom: A 
Multimodal Analysis of Conceptual Change and the Significance of Gesture 
(Doctoral thesis). University of Leicester: Leicester. 

This is the final version of a doctoral thesis completed at Bishop Grosseteste University and awarded 
by the University of Leicester on 1 February 2014.   

Copyright is retained by the author/s and/or other copyright holders. 
 
End users generally may reproduce, display or distribute single copies of content held within BG 
Research Online, in any format or medium, for personal research & study or for educational or other 
not‐for‐profit purposes provided that: 

 The full bibliographic details and a hyperlink to (or the URL of) the item’s record in BG Research 
Online are clearly displayed; 

 No part of the content or metadata is further copied, reproduced, distributed, displayed or 
published, in any format or medium; 

 The content and/or metadata is not used for commercial purposes; 

 The content is not altered or adapted without written permission from the rights owner/s,  
unless expressly permitted by licence.  

 
For other BG Research Online policies see http://researchonline.bishopg.ac.uk/policies.html. 
 
For enquiries about BG Research Online email bgro@bishopg.ac.uk. 

 

 

 

 



 
 
 
 
 
 
 
 
 
 

Constructing scientific knowledge in the classroom: a multimodal analysis of 

conceptual change and the significance of gesture 

 

 

 

 

Thesis submitted for the Degree of 

Doctor of Philosophy 

at the University of Leicester 

 

by 

 

Carol J. Callinan 

Centre for Educational Development and Research 

Bishop Grosseteste University 

 

 

 

January 2014 



ii 

 

Abstract 

 

 

Constructivism remains one of the most influential views of understanding how 

children learn science today.  Research investigating learning from within this 

viewpoint has led to the development of a range of theoretical models, most of which 

aim to explain the underlying processes associated with conceptual change.  Such 

models range in depth and scope with some attributing change to purely cognitive 

processes while others suggest a role for social factors.  Contemporary research has 

also begun to explore links between the role of practical activity, skills development 

and language. This study utilises a cross-sectional design in order to investigate the 

development of children’s ideas and concepts related to two areas of the English 

National Curriculum for Science: ‘electricity’ and ‘floating and sinking’.   

 

A new and innovative multimodal methodology combining practical science activities 

and traditional / conventional perspectives alongside interview and observational 

protocols is presented.  Multimodal research proposes that knowledge and meaning 

are transmitted through a range of responses types including language, drawings 

and gesture. The participants in this study were children aged 7, 11 and 14 years 

attending four schools in the East Midlands region. Results demonstrate that the 

children’s ideas could be developed using conceptual challenge tasks. The gestures 

that the children produced were categorised according to five different forms: 

referential, representative, expressive, thinking and social, often containing 

information about their science ideas that was not included in other response types. 

The results also begin to uncover how meaning is socially constructed and 

supported. These results form the basis of a critique of methodology intended to re-

evaluate and inform debate arising from different models of conceptual change.  The 

potential importance of studying children’s gestures in classroom settings for 

providing important cues and clues to underlying thoughts that may not be present in 

verbal or other more conventional responses alone is highlighted.  

 

Keywords: Learning in science, constructivism, conceptual change, multimodal 

research, gesture analysis 
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Chapter 1 Introduction 

 

 

1.1 Background 

 

 

The research presented in this thesis explores how children’s ideas in science 

change, from both traditional and multimodal perspectives. The multimodal 

perspective suggests that communication occurs across a range of response types 

(Kress, et al., 2001a, Jewitt, et al., 2001). These response types include drawings, 

verbal and written communication, and non-verbal communication such as body 

language and gesture (Kress, et al., 2001). The multimodal approach to 

understanding how knowledge is portrayed and discussed is still a new and evolving 

field of research. However, the approach has been applied in research investigating 

how science is communicated by teachers in the classroom (Kress, et al., 2001), 

how children use multimodal resources when discussing their ideas (Taylor, 2006; 

Blown & Bryce, 2010, Padalkar & Ramadas, 2011, Tang, et al., 2011), and how 

different response types can add further understanding to the ideas that children 

hold (Crowder & Newman, 1993; Goldin-Meadow, 1997, 2000, 2003; Crowder, 

1996). As yet, this approach has not been used to detail the notion of ‘conceptual 

change’, a full definition of which is provided in a subsequent section of this 

introduction. This work addresses this gap by attending to an analysis of gesture, 

establishing a typology of gestures that children use and what, if anything, this can 

reveal about children’s underlying ideas. Specifically, this work explores how 

children’s ideas about electricity and floating and sinking change both within and 

across primary and secondary school age phases, whether or not such changes can 

be instigated through a ‘conceptual challenge’ approach when teaching, and what, if 

anything, the analysis of gesture in conjunction with analysis of other response types 

might add to conceptual change theories.  

 

As with all research it is important to position the researcher in relation to the project 

that will be discussed in this work. The researcher has a background in psychology, 

and has been responsible for teaching psychology for some time. The researcher 
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has a deep interest in the processes of education, the way that learning occurs, and 

the learning strategies that children use when developing their ideas in the 

classroom. This interest has been evident since first training at undergraduate level 

when the researcher considered a career teaching primary aged children. Prior to 

undertaking the work detailed in this thesis, the researcher had worked in a number 

of primary schools on a voluntary capacity and had held an administrative role. The 

researcher had already undertaken educational research with primary aged children 

and university students and was seeking to extend this experience at secondary 

level. During the work undertaken for this thesis, the researcher volunteered in a 

local secondary school where, working alongside the special needs tutor, an after 

school science club was held once a week. The science club was open to all of the 

children from Year 7 onwards and often the children in attendance were there 

because of their interest in science. Previous experiences and the role within the 

science club was fundamental to supporting the researcher to develop effective 

approaches to working across all levels and provided valuable insight into the 

children’s ideas across a range of topics not just those detailed within this thesis. 

Philosophically, the researcher adopted a pragmatic approach to research, whereby 

the methods and analytical frameworks utilised were selected on the basis that they 

would enable the effective investigation of the research questions explored. Meeting 

the research aims included developing effective analytical procedures in order to 

explore the different responses types detailed previously. A further discussion of 

these analytical procedures is offered later. 

 

In this chapter, the general background to the work undertaken is outlined. The 

constructivist view of learning and the importance of the conceptual change 

movement in science education research is introduced and reviewed. A concise 

overview of both the traditional / conventional aspects to this work and its original 

features are highlighted. 
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 1.2 Science in the National Curriculum 

 

Understanding children’s learning in science is important intrinsically and because 

science has played a fundamental role within the English education system, 

particularly since the appearance of a National Curriculum of subjects in 1989.  At 

this time, science along with English and mathematics formed the core components 

of a centralised educational agenda intended to improve standards.  Electricity and 

floating and sinking have been included in the science component since its inception. 

In the contemporary curriculum these two science areas appear within Physical 

Process and Materials and their Properties. Both areas are also taught, although to 

varying degrees, through all four of the Key Stages (DfEE & QCA, 1999). Both 

science areas are concept rich and practical in nature and both had already been 

encountered previously by the children prior to participation in the research. 

However, despite the original commitment directed to science, subsequent 

developments and changes to the guidance associated with the science curriculum 

have led to questions over its provision particularly in the primary sector (Sharp & 

Grace, 2004).   

 

There has, of course, been much criticism of the National Curriculum (Sharp et al, 

2011), and it has been suggested that despite its initial impact resulting in 

educational achievement (Fortune, et al., 1993; HCEC, 1995; Ofsted, 2002) many 

teachers struggled to meet the demands of this subject (Boyle & Bragg, 2005; 

Ofsted, 2008; Ritchie, 1996; Russell, et al., 1995). Although there have been 

attempts to improve the skills of teachers in delivering the science curriculum this 

domain remains problematic and difficult (Jarvis, et al., 2003, Kinder & Harland, 

1991, Kruger, et al., 1994). Many teachers have limited subject knowledge in science 

and also have little confidence for teaching this area particularly at primary level 

(Holroyd & Harlen, 1996; Osborne & Simon, 1996; Russell, et al., 1992). Negative 

perceptions and attitudes have also been detected (Abd-El-Khalick & Lederman, 

2000, Lunn, 2002, Parker & Spink, 1997, Pell & Jarvis, 2003; Waters-Adams, 2006). 

More recent political events resulting in uncertainty regarding the status and direction 

of science within the National Curriculum make it difficult to describe the 

contemporary context fully. However, what is clear is that science remains an 

important, yet often overlooked, subject in the curriculum and may form the 
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foundation of many subsequent career paths for children.  Despite the political 

uncertainty, some recent publications still maintain that the knowledge that children 

gain during science education offers a valuable approach to thinking that promotes 

other areas of educational attainment and the development of essential life skills 

(The Royal Society, 2010).   

 

1.3 Children Learning Science 

 

Children learn science in two distinct ways. Firstly, science learning is characterised 

as taking place through the development of practical and intellectual skills (Levinson, 

1994; Millar & Osborne, 1998). Secondly, science learning is defined as taking place 

through knowledge acquisition and concept learning (Driver, et al., 1985). It is from 

these skills, knowledge and concepts that children’s ideas in science emerge. The 

assertions made in most recent documents support and justify the continued need 

for well-developed studies that aim to provide insight into the learning mechanisms 

that underpin skills development and the development of children’s ideas 

(Vosniadou, 2008).  

 

Over the last 40 years, there has been a diverse and extensive body of research that 

has aimed to investigate the ways that children learn science and the factors that 

influence this learning. A summary of different directions is presented in Figure 1. As 

can be seen, contemporary views of children’s learning in science have their roots in 

the global constructivist approaches to learning. These approaches are derived from 

important theorists such as Piaget (1929, 1974) and Vygotsky (1978), both of whom 

played active roles in establishing constructivism in Europe. During the period of time 

that these authors were establishing a constructivist view in Europe a North 

American stream of research was also being developed. The North American 

theorists included Kelly (1955), Bruner (1966), Gagné (1975, 1985), and Ausubel 

(1968, 1978). All of these important theorists continued the development of 

constructivist views of learning by incorporating their results into research in 

behaviourism, cognitive science, and education. 
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Figure 1: ‘Roadmap’ of the development of UK research investigating children’s 

ideas in science from a constructivist perspective and the resulting lines of 

experimental research designed to uncover the learning processes.  

 

These important global constructivist views introduced were later encapsulated in the 

domain-specific approach to constructivism for science education developed by 

Driver (1983, 1985, 1994). Driver was a prolific researcher and writer and 

spearheaded the dissemination and importance of the constructivist view in science 

education and science education research. Importantly, Driver took the different 

constructivist perspectives presented earlier and developed them into a coherent 

body of work that explained teachers’ experiences of children’s classroom learning, 

for example, that children came to class with existing ideas in science, that these 

ideas were subject to change through tuition and that even though children might 

have changed their ideas they may not believe them (Driver & Bell, 1986). Driver’s 

work was so fundamental that it gave rise to an enormous body of research which is 

now known as the Alternative Conceptions Movement (Taber, 2006). The Alternative 
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Conceptions Movement is highlighted in Figure 1 by the major science education 

research projects presented. These important research projects were fundamental 

for successfully helping to raise the profile of science education and for developing 

different pedagogical approaches to support tuition (e.g. Scott, et al., 1987). These 

projects also led to the development of various models which aimed to map how 

children’s ideas changed (West & Pines, 1985; Limon & Mason, 2002; Vosniadou, 

2008). In the first instance such changes were mapped according to the cognitive 

processes that supported such development (West & Pines, 1985, Limon & Mason, 

2002, Vosniadou, 2008). In Figure 1 it can been seen that these models of cognitive 

conceptual change also resulted in two other parallel research strands. The first of 

these was highlighted within a ‘warming’ trend where researchers began to explore 

the importance of affective aspects such as motivation (Pintrich, et al., 1993; Sinatra 

& Pintrich, 2003; Sinatra, 2005). This strand became known as ‘Intentional 

Conceptual Change’. The second strand began to explore sociocultural aspects such 

as learning environment of the child and became known embedded within ‘Situated 

Cognition Research’ (Vosniadou, 2007). Cognitive conceptual change is still a 

prominent research field. So much so that a recent handbook on conceptual change 

has been published (Vosniadou, 2008). However, constructivism and conceptual 

change research is not without its criticism. For example, Phillips (1995) proposed 

that there were so many forms of constructivism that it was difficult to tell which was 

being applied at any time. Taber (2010) furthered such criticism and proposed that 

the application of constructivism was problematic. These criticisms are important and 

will be developed further in Chapter 3. However, it is proposed that despite the 

critiques constructivism and cognitive conceptual change remains influential in 

science education research and it is in this field that this project is grounded. The 

social aspects of learning are also explored. 

 

What is clear, and with reference to Figure 1, is that the body of science education 

research stands as a testament to the enormously powerful premises of the 

constructivist approach to learning, which have been adopted in the field of science 

education in a manner that is perhaps not evident in any other school subject 

discipline. The powerful adoption of the constructivist approach may have occurred 

for two reasons: firstly because the children often have had first-hand experience of 

the phenomena that they formally study in the curriculum long before they ever enter 
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into a formal educational environment; secondly, the analogy between constructivism 

and working practices of a scientist who is actively constructing new understanding 

resonates coherently with teachers who are working with children in the classroom 

and attempting to recreate those moments of epiphany when new scientific 

discoveries are made in order to extend and support children’s learning. Indeed in 

almost all science classrooms the use of practical demonstrations in order to 

illustrate scientific concepts is considered to be critical for effective science teaching 

(Gott & Duggan, 1996; Wellington, 1998; Wickman & Ostman, 2002; Hogarth, et al., 

2005; Millar, 2010). Notably, it is because of the pre-existing knowledge that the 

children hold that science teaching is often faced with the task of either changing 

children’s perceptions of these experiences so that they are coherent with the 

established body of scientific knowledge that it is anticipated that children will learn 

or extending children’s understanding to include complex scientific terms and 

advanced ideas and concepts (Driver, et al., 1985).  

 

The processes of change that children’s ideas and concepts undergo during their 

education have been extensively studied in the conceptual change research and 

although there are many different ways of understanding conceptual change there is 

general agreement that part of a child’s education in science involves the process of 

restructuring ideas and concepts until they become more representative of scientific 

views (Vosniadou, 2008). What is less clear, however, are the actual processes that 

are undertaken when ideas and concepts are developed and changed. Today this 

area is still an active research strand. As indicated earlier, other research in science 

education has, however, begun to highlight that multimodality may be important both 

in terms of understanding teaching and in terms of understanding what and how 

children learn (Kress, et al., 2001). Studies have begun to demonstrate that teachers 

use a range of representations, both verbal and non-verbal, when they are teaching 

science (Kress, et al., 2001). Text books, drawings and pictures, models and 

gestures have all been shown to play a valuable role in representing many science 

concepts and are frequently employed by science teachers in order to increase 

children’s understanding. Complementary studies have shown that children also use 

a range of response types when discussing their knowledge (Crowder & Newman, 

1993; Crowder, 1996; Goldin-Meadows, 2000; Roth & Lawless, 2002). This 

multimodal research strand proposes that each form of response type may contain 
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its own affordances which permit the demonstration of different aspects of 

knowledge and although still in its infancy it is beginning to highlight many potential 

areas for study (Kress, et al., 2001). This work therefore aims to build on these 

existing foundations to incorporate a multimodal approach into a more conventional 

conceptual change research framework. 

 

1.4  About This Study 

 

This current work aims to build on the constructivist (Driver, 1985; Steffe & Gale, 

1995) and conceptual change literature (Vosniadou, 2008) and extend the way that 

the development of children’s ideas is understood by introducing a new and 

somewhat innovative multimodal approach to studying the development of children’s 

ideas in science (Jewitt, 2011).  Emerging literature has identified that children, 

especially those of primary age, may struggle with the complexity of scientific 

language but may nevertheless hold advanced ideas for certain science concepts 

(Roth & Lawless, 2002). The language barriers that children encounter when 

discussing ideas with teachers and other adults may result in misconceptions being 

diagnosed even when these may not exist (Ausubel, 1968, 1978). Importantly, the 

same research has begun to identify that there may be other clues and cues to the 

more complex underlying ideas that children hold which are not expressed in 

language. For example, evidence may be drawn from children’s drawings, gestures 

and approaches to tasks as these may contain representations that can be used in 

the interpretation of their ideas (Crowder & Newman, 1993; Goldin-Meadows, 2000). 

This work explores these multifaceted response types during practical science 

activities in order to determine if it is possible to use a multimodal approach to study 

knowledge acquisition and concept learning and to explore whether this can add to 

what is already known.  

 

As indicated, the work presented here focuses on two science areas: electricity and 

floating and sinking (the Archimedes Principle). These two contrasting topics were 

explicitly chosen in order to provide a basis for comparisons. Both had been 

previously studied in the conceptual change literature (e.g. for electricity, Shipstone, 

1985; Osborne, et al., 1991; Borges & Gilbert, 1999, for floating and sinking, Inhelder 
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& Piaget, 1958; Howe, et al., 1990; Havu-Nuutinen, 2005). Electricity as taught in 

school is often conceptually driven and counter-intuitive and relies on children’s 

abilities to interpret phenomena that are not always directly observable. Floating and 

sinking, on the other hand, was chosen as this provides children with the opportunity 

to explore a topic that they may have encountered many times before in a concrete 

way with resources that could be directly manipulated. The participating children for 

the main phase of study were selected from three age groups: Year 2 (6-7 years of 

age; N = 34), Year 6 (11-12 years of age; N = 44) and Year 9 (13-14 years of age; N 

= 15). These age groups were chosen because they represent the end of the Key 

Stages 1 -3 in the English school system and thus provide insight into school-based 

transition stages in children’s development. However, as the Year 9 children were 

just beginning their GCSE level studies at the time that the research was undertaken 

it was more difficult to recruit for this age group and this is reflected in the lower 

sample size.  The sample for the main phase of study was drawn from one 

mainstream primary school, one independent school and one secondary school. 

These schools were considered to be typical of the local geographic area and thus 

are proposed to be largely representative of at least the local population.  

 

As previously discussed, this work builds on cognitive conceptual change research in 

order to explore in more depth the changes that are evident in the topics of electricity 

and floating and sinking between primary and secondary aged children. As a point of 

departure from previous studies, a multimodal approach to studying the development 

of children’s ideas is adopted which aims to deliberately challenge the existing ideas 

that children have using practical science activities. Furthermore, a specific 

methodological approach was developed for this study that combines different 

approaches. Notably, the work adopts a dialogic approach (Alexander, 2004; Fisher, 

2007; Mercer, et al., 2009; Haneda & Wells, 2010) in order to establish effective 

interview protocols, a collaborative learning setting (Howe, 2009) in order to bring the 

research environment as close to normal classroom practice as possible, and uses 

observation and focus group techniques. It was established that by audio / video 

recording the activities the researcher would be able to analyse in depth the range of 

response types that the children used and if changes in cognitive structure arose 

from these events it was hoped that it would be possible to capture these changes 

as they occurred, thus providing a critical insight into the conceptual change 
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mechanisms that operate. Specifically this work will investigate the following 

research questions: 

 

• does a multimodal analysis of verbal and non-verbal communication facilitate 

a better understanding of children’s ideas in science? 

• can such analyses be utilised in order to explore and contribute to an 

understanding of the dynamics of conceptual change? 

• do outcomes from the work in this thesis have any classroom application? 

 

These research questions do perhaps also propose an overarching question 

regarding whether or not it is possible to apply a multimodal research lens to the 

issue of conceptual change in science education.  

 

 

1.5 Originality 

 

Originality in this thesis can be evidenced at many levels. First and foremost is the 

multimodal, task-based approach which was developed specifically for this work and 

which aimed to provide children with the opportunity to use and portray gestures, 

drawings and interpersonal aspects of their knowledge. As introduced in the previous 

section and discussed in further detail in Chapter 5, this approach incorporates 

interviews, focus groups and observation protocols in order to elicit and explore 

children’s ideas. The researcher also used a dialogic approach (Mercer, et al., 2009) 

and the children participated in collaborative learning (Howe, 2009) which enabled 

the research to accurately reflect a typical classroom learning environment. All 

elicitation was based on responses received during practical science activities. 

Children’s participation in the science activities was audio / video recorded in order 

to permit a detailed analysis of the different response types. As the study itself 

generated large volumes of data (approximately 72 hours of video data alone) a 

number of approaches were adopted or developed to reduce the data and to 

manage the analysis. An NVivo project was designed in order to track the coding of 

arising themes across the different age groups and in order to explore the responses 

for individual children within the project. Whilst this enabled the effective 
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management of data, an analytical framework which permitted the evaluation of the 

underlying meaning of the different response types was developed and assessed. In 

particular an emphasis was placed on the analyses and interpretation of the gestures 

that the children produced as these were proposed to have provided a route of 

communication for the children who may have struggled to articulate their ideas 

verbally. Indeed, the analysis of the children’s gestures provided an opportunity to 

construct the different categories of gestures that the children used and 

subsequently this provided the first opportunity to generate categories of gesture that 

could be specifically relevant for the science topics of electricity and floating and 

sinking. In order to present the results two new approaches were developed and 

trialled. The first of these was ‘storyboarding’. Storyboarding, which has been 

traditionally used in business and more predominately in media production, was 

introduced to provide one effective measure through which the range of response 

types displayed could be presented and monitored across the duration of the science 

activities. In order to explore the changes in concepts that occurred over time during 

the activities, a timeline analysis for the ideas that children discussed was further 

developed from work by Givry and Tiberghein (2012). The timeline analysis offered 

valuable insight into the processes of conceptual change that might be evident 

during a single teaching event. These are discussed in more depth in the later 

chapters of this work. 

 

1.6 Chapter Summaries 

 

In order to add to assist readers in their navigation of this thesis an overview of 

subsequent chapters follows. 

 

Chapter 2 – The Emergence of Constructivism: Global Perspectives – this chapter 

details what a constructivist view of learning in science is (Steffe & Gale, 1995) and 

presents the more common global theories of constructivism including those from the 

European school such as Piaget (1929, 1974) and Vygotsky (1978) and those from 

the North American school such as Kelly (1955), Bruner (1966), Gagné (1975) and 

Ausubel (1968). All of these key theorists had an important impact on the 

development of a domain specific view of constructivism as is used in contemporary 
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science education today. Whilst the importance of detailing these views might be 

questioned, it is proposed that understanding their philosophical insights and their 

research basis can provide important background that helps the reader to appreciate 

the context of this work. This background chapter provides a comparative analysis of 

these key constructivist thinkers and begins to critique the constructivist view 

adopted.  

 

Chapter 3 – Contemporary Constructivism: A Domain-Specific Perspective – this 

chapter discusses the evolution of a domain-specific constructivist view of science 

learning. Fundamentally, it is in this chapter that Driver’s extensive and influential 

work is introduced (e.g. Driver & Easley, 1978; Driver, 1985, 1995). The chapter 

explores some of the important science education research programmes (e.g. the 

Children’s Learning in Science Project and The Science Processes and Concept 

Exploration Project), the importance of which is highlighted before turning to a 

discussion of the research literature that has explored the areas of electricity (e.g. 

Shipstone, 1985; Osborne, et al., 1991; Borges & Gilbert, 1999) and floating and 

sinking (e.g. Inhelder & Piaget, 1958; Howe, et al., 1990; Havu-Nuutinen, 2005).  

Subsequently, the view of learning as cognitive conceptual change (Vosnidaou, 

2008) is introduced and a selection of the different models of conceptual change that 

have been developed in order to explain how children’s ideas change over time are 

reviewed (Vosniadou & Brewer, 1987; diSessa, 1988; Karmiloff-Smith, 1992; 

Luffiego, et al., 1994). These models of change are evaluated for their utility. The 

chapter ends by introducing the point of departure for this work compared to 

previous conceptual change projects. 

 

Chapter 4 – Methodology 1: Overall Design and Other Considerations – this chapter 

introduces the overall design of this research project including the two science areas 

explored using the dialogic teaching approach developed (Alexander, 2004; Mercer, 

et al., 2009) and the ways that the children’s responses were measured. The 

importance of method is highlighted and critiqued using typical approaches for 

studying conceptual change. The chapter then explores the context of the current 

study and discusses the pilot studies undertaken and the way that these have helped 

to develop the project overall. This chapter concludes with a critique of research 
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which aims to interpret the ideas of children using a framework proposed by Johnson 

and Gott (1996). 

 

Chapter 5 – Methodology 2: The Development of a Multimodal, Task-based 

Approach – this chapter discusses the importance of the underpinning theoretical 

frameworks used in this work and the ideas related to multimodality are discussed in 

relation to the findings from the pilot studies. Important studies from authors such as 

Kress (et al., 2001), Jewitt (2011) and Roth and Lawless (2002) are discussed. This 

chapter then details the development of a typology of gestures used in science 

activities (Callinan & Sharp, 2011). The results of the pilot study highlight the 

importance of studying gesture and including these details in future work. Next, the 

chapter turns to a discussion of the development of a storyboarding approach to 

investigating children’s ideas in science. This particular approach is a fundamental 

component of the originality contained within this work. Next, in order to highlight 

how changes in ideas can be mapped during a single activity, the development of a 

timeline analysis which aims to build on the work of Givry and Tiberghein (2012) is 

discussed. 

 

Chapter 6 – Children’s Ideas about Electricity: A Multimodal Perspective – this 

chapter presents the results of the electricity activities. These results are discussed 

in both conventional and multimodal terms. The differences between age groups is 

used in order to highlight the ways that ideas are proposed to change over time. The 

differences within the groups as measured at the beginning and end of the activities 

is discussed in order to show how, if at all, ideas changed within the context of a 

single activity. In order to explore the potential impact of the multimodal approach 

and what this adds to our understanding of children’s ideas, an analysis of the types 

of gestures that children used during their discussion of electricity is presented. 

Subsequently, three group studies exploring the impact of the different response 

types are used to illustrate how children used different resources in order to express 

their ideas. Finally, a timeline analysis of the Year 9 group study is used to highlight 

how children’s ideas change during the course of the activities. 

 

Chapter 7 – Children’s Ideas about Floating and Sinking: A Multimodal Perspective – 

this chapter presents the results of the floating and sinking activities. These results 
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are discussed in both conventional and multimodal terms. The differences between 

age groups is used in order to highlight the ways that ideas are proposed to change 

over time. The differences within the groups as measured at the beginning and end 

of the activities is discussed in order to show how, if at all, ideas changed within the 

context of a single activity. In order to explore the potential impact of the multimodal 

approach and what this adds to our understanding of children’s ideas, an analysis of 

the types of gestures that children used during their discussion of floating and 

sinking is presented. Subsequently, three group studies exploring the impact of the 

different responses types are used to illustrate how children use different resources 

in order to express their ideas. Finally a timeline analysis of the Year 6 group study is 

used to highlight how children’s ideas change during the course of the activities. 

 

Chapter 8 – Discussion and Conclusions – this chapter discusses the overall results 

of the project. The discussion returns to the research questions detailed in Section 

1.4 and proposes how the research undertaken in this thesis has responded to 

these. As with all previous chapters, the discussion responds to a traditional 

approach before turning to a critical review of the multimodal aspects. The resulting 

discussion then addresses any recommendations that can be drawn from the work in 

this thesis and relates this to classroom practice, assessment and curriculum 

development before making a number of recommendations for further multimodal 

research in science education.  

 

1.7 Discussion 

 

In this chapter the broad aims of this work have been introduced. The underpinning 

constructivist view of science education proposed by Driver (1985, 1995) was used 

to provide a foundation for an original study that explores the way that children’s 

ideas about electricity and floating and sinking develop and change over time. This 

work uses the responses from three age groups of children (in Year 2, Year 6, and 

Year 9), the age groups representing transitional phases between the Key Stages in 

the English education system, and aims to develop a new approach to studying 

these ideas by using a multimodal, task-based approach. The multimodal, task 

based approach is grounded in a dialogic teaching approach (Mercer, et al., 2009) 
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and also utilises collaborative group work (Howe, et al., 2009) and practical science 

activities. Fundamental to the work is the intention to match the typical learning 

environments of the children as closely as possible so that the results of the work 

may have high levels of ecological validity. The sessions aim to deliberately 

challenge the ideas that the children hold in order to explore what, if any, changes 

occur as a result of teaching. The results of the subsequent analyses will then be 

related to models of cognitive conceptual change presented in detail in Chapter 3. In 

order to explore the data from a multimodal perspective, this work also develops two 

new approaches to analysis. The first is storyboarding. The storyboards aim to 

highlight the different response types (e.g. drawing, written, verbal and gesture) that 

the children use when discussing their ideas as well as capture any important social 

interactions between the children so that this work can also inform the sociological 

aspects of children’s learning. Secondly, this work develops a timeline analysis 

approach to exploring how ideas evolve during a single session. This analysis is 

developed from the work of Givry and Tiberghein (2012) and aims to capture which 

children introduce new ideas and how these are developed and related to those 

already held. The aim is to capture exact moments of conceptual change in order to 

inform the mechanisms that underpin this. 
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Chapter 2  The Emergence of Constructivism                                                          

 

 

 

2.1 Introduction 

 

This chapter defines what constructivism is as it is commonly understood within the 

field of science education and discusses the historical perspectives of constructivism 

whilst highlighting the key theorists who promoted this view. Understanding the 

impact that such theorists have had on the development of the constructivist 

perspective in science education is vital here as this helps to elucidate the direction, 

and theoretical and philosophical underpinnings of this important research approach. 

In this chapter, both personal and social theories of constructivism are discussed 

and critically evaluated from a theoretical perspective and it is proposed that both of 

these aspects are important elements that require detailed understanding in order to 

inform how children construct their ideas in science (Fosnot & Perry, 2005; Driver, et 

al., 1994). The impact of these divergent perspectives is also summarised according 

to their influence on contemporary notions used in today’s science classrooms 

particularly with reference to how these influence teaching, learning and curriculum 

design. 

 

2.2 What is Constructivism? 

 

In science education, constructivism is a view of learning which, in its most basic and 

operationalized philosophical form, suggests that children behave similarly to 

scientists in that they gather information gained from experiences, observations and 

tuition and use this to formulate predictive hypotheses in order to understand the 

world in which they live (Driver, et al.. 1994). These hypotheses may then be tested 

during subsequent experience and if confirmed actively shape a child’s scientific 

knowledge and understanding. According to this approach, each child possesses a 

reality that they have constructed for themselves; a reality which is unique and offers 

insight into the experiences and interactions with the world that they have 

encountered (Piaget, 1929; von Glasersfeld 1995). However, it is notable here that 
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there are several issues related to these underpinning philosophical notions 

(Nussbaum, 1989; Prawat & Floden, 1994; Steffe and Gale, 1995; Bell, 2005) and 

the solipsism that this view is sometimes proposed to imply (Thompson, 1995). This 

has been subject to debate by contemporary authors such as Duit (1995) who claims 

that the social influence on a child’s world view is such that individual and unique 

conceptions are rarely formed because of the shared experiences that they have. 

Central to, and underpinning all constructivist approaches is the thesis that, 

therefore, children are active participants in their knowledge construction and co-

construction (Brook, Driver & Johnston, 1989) and as such meaningful learning 

tends to take place in many ways, not only through direct transmission. Applied to 

schooling, constructivism proposes that when children are undertaking formal 

science tuition in lessons they construct their own knowledge and concepts based on 

their experiences and reflection on those experiences within the learning 

environment (Driver & Easley, 1978). When new information is encountered it needs 

to be either reconciled with previous ideas or discarded as irrelevant. The exact 

nature of the outcome from formal science tuition is heavily reliant on the 

interpretations that children generate from the material presented and mediated in 

the classroom with other children and the teacher. 

 

The particularly simple constructivist view of learning science mentioned also 

suggests that when children enter into formal classroom environments they already 

have some knowledge of scientific concepts and the world around them even if not 

understood or recognised in a formal scientific manner. It is important to note that the 

precise characteristics of this early scientific knowledge are often uncertain and 

debated in the literature with authors assigning different weight to the quality of 

children’s early ideas arising. Thus far, such early ideas have been referenced to 

over time as quaint distortions (Piaget, 1929), errors (Bradley, 1996), misconceptions 

(Rowell, et al., 1990), preconceptions (Clement, et al., 1989) and alternative 

frameworks (Driver & Easley, 1978) reflecting the value attached. Whilst it could be 

argued that all of these terms are aiming to identify and categorise the same thing, 

e.g. an early conception of phenomena which is developed from an uninformed 

perspective, the terms used can carry a great deal of weight and can influence how 

they are perceived. By calling children’s early or preliminary ideas misconceptions, 

for example, implies that these are incorrect. What is agreed in all of this is that 
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children may not formally recognise these ideas as scientific in the academic sense 

themselves. Clearly, children do develop in a world of dynamic experiences and 

through these experiences they learn from an early age to negotiate key scientific 

concepts such as motion, force, and causality, albeit in a simplified manner to the 

scientist working at the cutting edge of the field. Importantly, it is these early 

experiences that are fundamental to later learning and because of the individuality of 

early experiences it is anticipated that all children will come to their formal education 

with their own unique and often varying understandings. It is this view that is 

accepted almost unquestioningly by most science educators today.  This chapter 

now turns to a discussion of the founders of constructivism in order to further explore 

the diversity of views and to introduce the contemporary view of constructivism in 

science education.  

 

 2.3 The Founders of Constructivism 

 

The constructivist movement arguably began with the work of Piaget (1928, 1929) in 

1920s Europe followed by Vygotsky (1962, 1978). By the 1950s there was a second 

wave of constructivist views, this time originating from North America and in the 

educational context. The first was presented by Bruner (1966, 1971), followed by 

Kelly (1955, 1970), Gagné (1975, 1985) and Ausubel (1968, 1978). All of these 

different viewpoints underpinned the contemporary constructivist views of Driver 

(1973 onwards). This critique first explores the impact of each of these founders in 

order to facilitate a deeper understanding of the underlying similarities and 

differences between these distinct approaches to understanding how ideas develop. 

The early constructivist founders, captured in Figure 2 appears, at first glance at 

least, to demonstrate a linear development of ideas, however, there is a great deal of 

overlap and cross fertilisation between them and they often incorporated aspects of 

each other’s work into their own (for example, Piaget’s work was discussed and 

further developed within Ausubel’s cognitive perspective on educational psychology). 

Thus there is a significant interplay between understandings and approaches to 

constructivism. 
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Figure 2: Key authors of constructivist approaches to learning which underpin 

contemporary understanding of children’s learning in science. 

 

The theoretical underpinnings of each of these approaches to constructivism ranges 

significantly in their depth and scope with each model placing a dissimilar focus on 

particular attributes of the individual’s psychology and dissimilar emphasis on the 

driving forces behind the learning process (for example, Piaget proposed that it was 

maturation that drove forward the development of ideas whilst Vygotsky argued that 

the social environment and support from others provided a catalyst for change). It is 

proposed that rather than be considered discrete views of learning, the different 

approaches to constructivism can be better understood as a part of wider continuum 

that encompasses the domains of individuality as discussed in personal 

constructivism and sociocultural influences as discussed by social constructivism. 

Fundamentally, it may have been these theoretical lenses that the authors utilised 

that may have guided these distinct differences. For example, Piaget studied 

individual children using an approach that focused on their individual ability to 

undertake activities and discuss their ideas; this may have significantly influenced his 

focus on an individual’s intellectual growth.  
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Global theories of constructivism are multifaceted, wide ranging and differ according 

to the weight attributed to personal and social factors (Piaget, 1974; Vygotsky, 1978; 

Tudge & Winterhoff, 1993; Phillips, 1995). It has been suggested that there are two 

key schools of thought, personal constructivism (Piaget, 1928, 1929; Kelly, 1955, 

1970; Bruner, 1955, 1970; Gagné 1975, 1985; and Ausubel, 1968, 1978) and social 

constructivism (Vygotsky, 1962, 1978, and Bruner, 1986). Personal constructivism, 

sometimes referred to as cognitive constructivism (Ausubel, 1978), focuses on the 

internal mechanisms that operate within a child as they are acquiring new knowledge 

and skills, whilst social constructivism places an emphasis on the learning 

environment and the influence that peers, teachers and carers can have on 

development. Indeed for the purposes of this work it is proposed that acts of 

personal constructivism and acts of social constructivism are in fact both vital 

components of constructivism as a whole and both have a role in the formation of 

new knowledge and the development of ideas that already exist. Despite the debates 

what is clear is that it was these global approaches to understanding how and what 

children learn that led to a turning point in science education and the subsequent 

development of a more domain-specific approach (e.g. Driver & Easley, 1978; Driver 

& Erikson, 1983; Driver & Bell, 1986).  

 

 2.3.1 Piaget and Genetic Epistemology 

 

The creation and establishment of the constructivist school of thought is most widely 

accredited to Piaget, considered to be ‘the great pioneer of the constructivist theory 

of knowing’ (von Glasersfeld, 1990). Piaget’s work was influential across a range of 

topics but it was particularly resonant with science education because Piaget’s 

experiments with children often centred on scientific concepts. In his seminal work 

“The Child’s Conception of the World”, for example, he interviewed children using his 

‘clinical method’ which was a combination of interviews and practical tasks designed 

to probe different intellectual abilities in order to uncover their ideas for astronomy 

concepts, a line of enquiry that is still particularly active in the science education 

research field today (e.g. Osborne, et al., 1994; Sharp & Kuerbis, 2006). In addition 

to his topics of choice, Piaget had unprecedented access to research participants 

and through an open agreement with local schools in Geneva his research team 
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were welcome to attend any school after lunchtime and use any of the children as 

research participants (Bliss, 2010).   

 

Piaget was a prolific writer and published extensively throughout his career. Drawing 

on his background in biology, Piaget’s theory of genetic epistemology aimed to 

uncover the biological basis of intelligence (Piaget, 1980). In order to explore this, 

Piaget charted children’s intellectual development across different ages. The 

research resulted in his development of a series of sequential developmental 

cognitive stages that he proposed explained the changes in children’s abilities and 

ideas evident in his research findings (Piaget, 1929, 1960, 1964, 1974, 1980). 

Fundamentally, Piaget’s theory was based on a theoretical approach that challenged 

the nature of truth and reality by suggesting that knowledge was an active and 

individual construction that depends on the experiences that a child encountered 

(von Glasersfeld, 1990) and the pivotal notion that “The mind organises the world by 

organising itself” (Piaget, 1937, p.311). This crucial proposal highlighted an important 

view of children’s ontology, the nature of reality, and the epistemological exploration 

which is still used in science education research today. Piaget considered cognition 

to be a biological function rather than the result of impersonal reason, a view that 

was based on the ideas of the philosopher Immanuel Kant (1990). Kant suggested 

that knowledge is determined by an individual’s way of perceiving and conceiving the 

world. Piagetian constructivism, as it became known, utilised an adaptive approach 

and suggested that all intellectual development could be understood as a child 

attempts to come to terms with, and work in synchronicity with, the world in which 

they live. It is important to note that within Piagetian theory ‘intelligence’ was an 

arising feature of the child’s adaptation to their environment, thus intelligence was 

not defined as knowledge but rather the utility that arises from the ability to apply 

knowledge in order to operate within the world. Piaget proposed that children not 

only interacted with the world but were also transformed by such interaction, thus the 

two aspects share a mutually supporting relationship that facilitates change. Piaget 

agreed with Hegel’s principle of a priori idealism (Hegel, 1971; deVries, 1988) but 

also added elements of empiricism to his theory. A central component of Piaget’s 

approach was that all thought was fundamentally linked to action and as such, he 

suggested that: 
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“…to know an object implies its incorporation in action schemes, and this is 

true on the most elementary sensorimotor level and all the way up to the 

highest logical-mathematical operations.” (Piaget, 1967, p. 17) 

 

As previously stated Piaget envisioned that knowledge developed through a series of 

progressive steps, often depicted metaphorically as a spiral staircase (see Figure 3), 

during which theses and antitheses of understanding interacted in order to generate 

new knowledge. Importantly, acquisition of progressive stages was accompanied by 

a more advanced level of understanding and qualitatively different cognitive skills. 

This approach maintained that knowledge consisted of self-regulating symbolic 

structures called schemes (Piaget, 1929). For Piaget, schemes were roughly defined 

as knowledge packets that were stored and interrelated in memory. Schemes 

contained information that guided behaviour and cognition as well as information 

regarding interaction and feedback gained from the environment. It was through 

these schemes that new information was interpreted (Cakir, 2008) and organised. In 

Piaget’s theory (1929), schemes are developed through two key processes: 

 

• assimilation – which occurred where new information fitted with the existing 

schemes held, thus new information was added into the knowledge that 

already existed; 

• accommodation – which occurred when new information did not fit with the 

schemes that were already held, learning in this way occurred when the 

existing knowledge was changed or new schemes created. 
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Figure 3: Piaget’s ‘spiral staircase’ of the qualitatively distinct stages of intellectual 

development (staircase illustration Burnett, 2012). 

 

 

According to Piaget, as the schemes held by the child become more complex they 

begin to take the shape of structures, as the structures become more complex they 

become hierarchically organised within the cognitive system. Importantly, within this 

approach it was essential that some form of knowledge to which new information 

could be related already existed. Underpinning the learning process itself was the 

need for cognitive equilibrium or balance. According to Piaget (1928, 1929, 1960; 

1980; Piaget & Inhelder, 1967) the child actively strives for stability, functionally 

described as the cognitive state of equilibration. Equilibration was a drive state that 

acted as a self-directing mechanism and promoted all learning. In support of his 

perspective Piaget presented extensive systematic evidence, for example, in 
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‘Children’s understanding of causality’ (1928) the progress of children’s knowledge of 

physics and their understanding of the characteristics of living things as they pass 

through his four stages of development was charted. These results were as follows: 

 

• sensorimotor stage – birth to two years, children are egocentric (cannot 

perceive the views of others) and experience the world directly through their 

senses;  

• preoperational stage – two to seven years of age, egocentrism gradually 

weakens during this stage, magical thinking predominates, children cannot 

conserve or use logical thinking skills; 

• concrete operational stage – seven to twelve years of age, children are no 

longer egocentric, they begin to think logically with the assistance of practical 

aids but are concrete in their thinking skills; 

• formal operational stage – twelve years onwards, children develop abstract 

thought and are able to conserve and think logically. 

 

Piaget proposed that children’s earliest understandings reflected a lack of 

boundaries between the self and the external world. Furthermore, Piaget (1928) 

stated that the following levels appeared within children’s perceptions of causality: 

 

• feelings of participation or magic, where the child is involved in or with the 

actions of nature; 

• animism, in which consciousness is attributed to inanimate objects or events; 

• anthropomorphism, in which consciousness and human attributes are 

attributed to inanimate objects or events; 

• artificialism, in which the child considers objects or events as the product of 

human or god-like creation; 

• teleology, in which creative activity is attributed to the objects or events 

themselves, phenomena having a predetermined purpose reflected in the 

outcome of their occurring; 
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• a kind of naturalism, in which every day occurring elements interact to 

produce an observed object or event; 

• finalism, the idea of finality without the origins or consequences of an event or 

process being noticed; 

• force, that things work in a way similar to human muscular action; 

• physical or mechanical explanations which approximate to correct scientific 

solutions. 

Thus it was proposed that very young children misconceived causality in objects by 

attributing characteristics such as objects operating under their own consciousness 

because they moved (Piaget, 1928). In the second stage of development causality 

was characterised by a confounding of moral and physical links and by the 

incorporation of both animism and artificialism.  Animism was reflected in children’s 

responses when they claimed that inanimate objects possessed some form of self-

driven motivation that guided their behaviour (Piaget, 1928).  Thus, it was common 

for children to perceive water contained within a river as having a will of its own by 

working toward a purpose (for example it flows to give people water to drink or make 

boats move forward).  In the third stage of development understanding of physical 

objects and their subsequent movements were understood from a dynamic 

perspective (Piaget, 1928).  By this age children came to realise that there were 

necessary features associated with movement and that objects were moved by 

forces.  However, this understanding of forces was limited by the child’s 

understanding and was thought to be similar to Aristotle’s understanding of physics 

(Piaget, 1928).  In the final stage of development (age 10 to 11); the child began to 

understand not only the mechanical explanation of movement but also was now able 

to appreciate rational principles (Piaget, 1928).   

 

Piaget’s approach was influential within the teaching community particularly with 

reference to curriculum design perhaps because it was the first theory that could be 

applied to such contexts. Notably Piaget’s approach highlighted the ages at which 

children would be able to learn more complex ideas. According to Piaget (1930) 

teaching young children such knowledge too soon gives rise to the “quaintest 



26 

 

distortions” (p. 296), ideas that are not scientific but rather reflect the immaturity of 

the child’s mind.  In adherence to this warning and as a way of using research to 

inform good practice in education the Schools Council Science 5-13 project, one of 

the first published science curricula, used Piaget’s framework to match teaching 

activities to expectations for children’s intellectual performance at given ages. 

Evidence of this can be drawn from the Match and Mismatch project (Harlen, et al., 

1977a, 1977b). Shayer (1971) suggested that Piaget’s theory gave educators 

something to work with and as such the stages of intellectual development were 

used in order to assess the science projects of the Nuffield Foundation (Bliss, 1995). 

In support of this approach, research demonstrated that instructional design based 

on Piaget’s sequence of intellectual development had been successful for teaching 

aspects of physics to children (Bass & Montague, 1972). Supporting evidence for 

this view was also drawn from a range of studies including one by Sayre and Ball 

(1975) who presented evidence that children with lower attainment were classified in 

the lower stages of intellectual development. Sayre and Ball concluded that all 

teachers should be aware of the four stages of development in order to assess 

whether their children were ready for science tuition or not. In another study 

investigating secondary school children’s attainment of concepts in biology, 

chemistry and physics (Lawson & Renner, 1975), a multiple linear regression 

analysis of students’ scores on Piagetian tasks and scores on written science 

examinations revealed significant positive correlations. These results suggested that 

attainment of science concepts was easier for children who have reached an 

appropriate level of intellectual development, namely the formal operational stage. 

The study concluded that: 

 

“a substantial proportion of secondary school science subject matter may not 

be suitable in terms of the intellectual development of the learner” (p. 356).  

 

However, as well as guiding the science curriculum and children’s learning of 

scientific concepts the application of the ‘ages and stages’ theory to teaching 

practices was claimed to have been misused as a ‘get out clause’ in order to delay 

the teaching of more difficult concepts (Bliss, 1995). The notion of readiness that 

appeared within both Piaget’s work and the practice of some science educators was 

the subject of dispute (Bruner 1966). The results to recent research projects have 
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further illustrated that children can learn abstract concepts such as astronomy during 

primary school tuition even though they would be considered too young within the 

Piagetian theory framework (Sharp & Kuerbis, 2006). Further to this some of Piaget’s 

central ideas have also been questioned including children’s egocentrism 

(Donaldson, 1978) and the proposal that children think in a qualitatively different way 

(Keil, 1986; Carey, 1985). Indeed authors such as Carey (1985) propose that the 

evidence presented by Piaget could be re-interpreted to support a view that the 

differences between children’s and adults understanding of science concepts may 

reflect the reorganisation of domain specific knowledge that occurs during the 

learning process and may therefore show evidence of expertise effects. Additionally, 

it is often claimed that while Piaget focused on individual development he did not 

account for the impact of the social world on the child and the ways in which this 

could facilitate their learning, however, discussion later will reveal that this may in 

some part be either a fallacy or a misinterpretation of Piaget’s work. The 

development of Piaget’s constructivist approach substantially impacted upon 

education in Europe but around the same time another key constructivist thinker was 

developing his own approach to constructivism which this time placed a greater 

emphasis on the social aspects of learning and proposed that internal processing 

was subservient to the external interaction. 

 

2.3.2 Vygotsky’s Socio-Cultural Approach 

 

Vygotsky was a Russian author who focused his research career on investigating 

children’s learning as they passed through the formal education environment, and 

understanding the educational environment was fundamental to this view. Vygotsky 

(1962, 1978) suggested that the basis of cognition was social and cultural and that 

children’s intellectual development could be supported by others through the process 

of social interaction. In particular the interaction between adults and children in the 

learning environment were central components of Vygotsky’s approach. Accordingly, 

Vygotsky suggested that new functions first occurred within the social environment, 

these were then internalised and occurred again on a psychological level (Vygotsky, 

1978). It was at this point that there was a departure between the theories of Piaget 

and Vygotsky. For Piaget acts are internalised first, but for Vygotsky they occur 
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socially before becoming a part of the child’s cognitive repertoire. Vygotsky 

suggested that adults could support children’s acquisition of more complex concepts 

through the Zone of Proximal Development (ZPD). The ZPD was a proposed space 

in which the adult could lower their ability to meet with that of the child and thus 

formulate a supporting environment that permited children room to expand their 

intellectual abilities. According to Vygotsky (1978):  

 

“The zone of proximal development defines those functions that have not yet 

matured but are in the process of maturation, functions that will mature 

tomorrow but are currently in an embryonic state.” (p.86)  

 

It is important to note that like Piaget, Vygotsky suggested that there were 

restrictions on what children would be able to achieve within this space. Thus when 

teaching using the ZPD it was essential that educators only supported the 

development of concepts that were already beginning to form. Within Vygotsky’s 

theory, language was proposed to hold a fundamental role as a mediator in 

children’s development of thought (Cakir, 2008). It was suggested that through 

language children were introduced to a symbolic world and it was through these 

symbols and their use with others in the social environment that meanings were 

negotiated and come to be understood in a way that is acceptable within the culture 

(Driver, et al., 1994). One reason that Vygotsky held language central to his theory 

were his observations that children would use speech in order to direct their problem 

solving tasks. This led to the conclusion that: 

 

“…children solve practical tasks with the help of speech, as well as their eyes 

and hands.” (1978, p.26) 

 

Vygotsky proposed that language and thought were fundamentally related and that it 

was through language that children were able to develop their thinking skills and 

develop concepts, thus language served an organisational role in the child’s thinking. 

Concepts were defined as ‘knowledge packages’ that were stored within the child’s 

mind. The form that concepts took depended on the way in which they had been 

learned. Vygotsky’s framework discussed two distinct types of conceptions that 

children form: those that arise spontaneously or are based on the child’s experiences 



29 

 

and thinking and those scientific concepts that are explicitly taught in school (Cakir, 

2008; Moll, 1990). This view proposing that children had different types of concepts 

was further developed in the work of Solomon (1987). It was suggested that while 

taught concepts were highly systematic and organised, spontaneously constructed 

concepts were not. In fact Vygotsky suggested that everyday scientific knowledge 

consisted of a piecemeal collection of descriptive and explanatory fragments rather 

than a consistently organised ‘theory’. Vygotsky proposed that the two types of 

concepts interacted and the more organised taught concepts provided a framework 

for understanding everyday knowledge. This in turn resulted in a transformation of 

the spontaneous or experiential concepts (Cakir, 2008). It was proposed that in order 

for this incorporation of everyday knowledge to occur “thinking must move upward 

toward abstraction and generalisation” (Cakir, 2008: p.195). In summary, it was 

through the incorporation of both everyday knowledge and science concepts taught 

in school that children attained an understanding of scientific knowledge that was 

highly organised. Tolmie et al (1993) suggested that within the Vygotskian 

framework, experience was not enough to support this acquisition; it must be 

mediated with words as this facilitated understanding in a wider context.  One 

criticism often aimed at Vygotsky’s approach was that he placed his understanding 

of intellectual development almost exclusively within the social domain. However, 

reference to Vygotsky’s work (1978) demonstrated that he perceived a dual process 

of attainment based on the biological basis of elementary processes as well as on 

the socioculturally founded higher functions. Vygotsky (1983) asserted that: 

 

“A normal child’s socialisation is usually fused with the processes of 

maturation. Both lines of development – natural and cultural – coincide and 

merge one into the other.” (p.22)  

 

Thus, Vygotsky also perceived the importance of maturational development and the 

way in which such development supported the child’s intellectual development. 

Indeed, like Piaget, Vygotsky proposed a stage-like theory for the development of 

concepts which proposed that only adults used true concepts (Van Der Veer & 

Valsinger, 1994). Whilst there have been many discussions regarding the differences 

between the theories of Piaget and Vygotsky, in some cases important discussions 

have highlighted the similarities between them (e.g. Vygotsky, 1984; Piaget, 1964). 
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The impact of Vygotsky’s understanding of children’s development of higher-level 

thinking has also been influential within science education most notably through its 

application to inform on classroom practice. From this approach if children are to 

learn then “teacher intervention is essential” (Driver, et al., 1994, p.7). The teacher’s 

task, therefore, is to lead the children to the commonly held science understandings 

while providing appropriate experiences, including the use of appropriate language, 

for the children to acquire the appropriate scientific concepts (Driver, et al., 1994). In 

addition, the proposal from the sociocultural approach is that there needs to be 

scope in the classroom for discussion both with the teacher and with peers and this 

can help to facilitate the development of more organised science concepts. 

Vygotsky’s work is particularly popular because of the social approach which is 

resonant with the everyday science classroom. Key authors such as Solomon (1983, 

1985, 1987) support Vygotsky’s approach and have provided evidence of social 

construction in the classroom. Having summarised the more important European 

constructivists, this discussion now turns to theories from North America.   

 

2.3.3 Bruner’s Process of Education / Curriculum Approach 

 

Bruner’s approach to learning was been firmly embedded in a constructivist 

framework holding the central premise that learning was an active process. In his 

approach to education, Bruner (1966) firmly asserted that knowledge was not a 

product of teaching but a process that the learner participates in:  

 

“To instruct someone…is not a matter of getting him to commit results to 

mind. Rather, it is to teach him to participate in the process that makes 

possible the establishment of knowledge…Knowing is a process not a 

product.” (p. 72) 

 

Bruner’s view of learning implied that one of the central goals of children’s education 

was to facilitate meaningful learning that assisted them in attaining the ability to go 

beyond the materials that are actually taught. Bruner, like many other constructivists, 

suggested that learners used their past and current knowledge in the construction of 

new ideas or concepts. Thus, his approach placed a great emphasis on the 
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knowledge that the child already possessed. In agreement with other constructivists 

Bruner stated that the learner actively selected and transformed the information that 

they received; they constructed hypotheses based on what they already knew and 

made decisions in light of the underlying cognitive structures that they held. In this 

context, Bruner defined cognitive structure as the schema or the mental models that 

the individual had stored in their memory. The cognitive structure was responsible for 

providing meaning and organisation to information and this enabled the individual to 

go beyond what is given in order to generalise learning to new situations. According 

to Bruner (1966), mental representations came in three forms and it was considered 

important that children were given the opportunity to progress any new material 

through these forms. The forms were: 

 

• enactive – based in sensorimotor, action-based experience; 

• iconic – image-based experience; 

• symbolic – language-based. 

 

Bruner proposed that these mental representations were progressive. At the most 

basic level of tuition it was thought important for children to engage with active 

opportunities to learn so that they were able to develop the enactive level of 

representations. Once these had been established the opportunity should be 

provided for children to develop iconic representations, and so on, until their ideas 

were located within symbolic representations. 

 

In a pivotal text published in 1966, Bruner proposed that a theory of instruction 

should address four aspects in order to enable effective learning: 

 

• the learner’s predisposition towards learning; 

• the way that a body of knowledge can be structured to enable it to be grasped 

by learners; 

• the most effective sequences in which material can be presented; 

• the nature and pacing of rewards or punishment. 
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In more recent work Bruner (1986, 1990, 1996) expanded these aspects to include 

social and cultural influences on learning and the influence that legal requirements 

can have on the provision of adequate education for children. In 1996, Bruner 

effectively turned his back on his cognitive roots and stated that: 

 

“…culture shapes the mind…it provides us with a toolkit by which we 

construct not only our worlds but our very conception of ourselves and our 

powers.” (p. x) 

 

As such, Bruner recognised that learning was not a solitary activity and that wider 

aspects of culture and the social environment influenced it, a point clearly illustrated 

when he stated: 

 

“…human mental activity is neither solo nor conducted unassisted even when 

it goes on ‘inside the head’…” (ibid, p. xi) 

 

Bruner’s contributions to learning can be summarised according to three principles 

resulting in his model of the spiral curriculum. Firstly, the experiences and contexts 

of instruction that facilitates the children’s readiness to learn needs to be carefully 

considered. Secondly, as previously stated in the four aspects that enable effective 

learning, instruction should be structured so that it is easy for the student to learn. If 

instruction is not appropriately structured this may form a barrier to understanding 

and prevent learning from taking place. Bruner proposed that one way in which this 

can be achieved is to organise the curriculum into a spiral. The spiral permits the 

learner to revisit concepts at different levels of abstraction over time, thus enabling 

children to progressively build on the cognitive structures that they have attained at 

an earlier time. Bruner stated: 

 

“A curriculum as it develops should revisit basic ideas repeatedly, building 

upon them until the student has grasped the full formal apparatus that goes 

with them…” (1966, p. 13) 

 

Finally, when designing instruction the materials used and the organisation of the 

material should facilitate the children’s extrapolation of the subject matter. Learners 
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should be encouraged to go beyond the information that is given. Bruner had 

undoubtedly greatly influenced modern theories of instruction and approaches to 

working in education; however, his influence within science education is much more 

difficult to locate. Most science education research refers to Bruner’s proposals, 

specifically his notions of scaffolding, which is when adults facilitate children’s 

learning by generating a supporting environment. However, there is little, if any, 

evidence of direct tests of his work within the science education field other than by 

association. Thus until this gap in research is filled it is difficult to discuss the exact 

impact that Bruner’s approach to constructivism has had on contemporary 

understandings of how children learn science in the classroom even though his 

influences are evident in the curriculum that children in main-stream schools receive. 

Clearly, Bruner’s work was drawn from the global context and his model of 

instruction was widely adopted. In addition, authors such as Driver (Driver, et al., 

1994) frequently identified Bruner’s contribution to science education.  

 

Thus far the constructivists discussed in this work all locate their work in different 

fields of expertise. Bruner, for example, adopted an approach that was heavily 

biased towards the structure of education. In contrast to this approach, Kelly wrote 

extensively about constructivism from a therapeutic context. 

 

2.3.4 Kelly’s Constructive Alternativism 

 

George Kelly was an American clinical psychologist who worked extensively to 

develop an understanding of how the unique view that each individual had of the 

world influenced his or her understanding of the phenomena that was experienced. 

Kelly’s constructive alternativism approach supported the notion that each individual 

actively constructed his or her own knowledge of the world. Kelly (1955) suggested 

that all individuals should be perceived as ‘lay’ scientists who formulate hypotheses 

about expectations and test these in everyday interactions both within the social 

world and within everyday experiences. According to Kelly this form of human 

activity originated from a desire to predict and exert control within the world of 

experiences.  Kelly proposed that information was formulated into personal 

constructs, forms of mental representation that contained information about concepts 
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and detailed the way that the world had been perceived. Personal constructs were 

interpretations of experiences and phenomena which according to Kelly were 

dynamic structures that were constantly in a state of revision. Constructs were 

revised in three key ways: firstly, they could be supported or made stronger, 

secondly they could be revised or altered in line with new information, or thirdly 

sometimes they were abandoned altogether when information was completely 

inconsistent with expectations. In his description of constructs Kelly (1955) stated: 

 

“Constructs are used for predications of things to come, and the world keeps 

rolling along and revealing these predictions to be either correct or 

misleading. This fact provides the basis for the revision of constructs and, 

eventually, of whole construction systems. If it were a static world that we 

lived in, our thinking about it might be static too. But new things keep 

happening and our predictions keep turning out in expected or unexpected 

ways. Each day’s experience calls for the consolidation of some aspects of 

our outlook, revision of some, and outright abandonment of others.” (p.14) 

 

Kelly’s approach placed a great emphasis on the role of the social environment in 

the formulation and the alteration of constructs, according to Kelly people also 

influenced the constructs that were held. Whilst in his original work Kelly’s approach 

focused on the development of personality, it has been suggested that the approach 

can easily be applied in the science education context in order to explain how 

children develop their ideas for science phenomena (Gilbert & Watts, 1983). 

Fundamentally the approach can be used to understand the individuality that is 

observed between the way in which children come to develop and understand 

scientific concepts and the ways in which children’s knowledge may evolve over 

time.  

 

The application of Kelly’s approach formed the theoretical foundation of a thesis by 

Shapiro (1994) who adopted a personal construct approach to studying how children 

acquired their knowledge of the concept of light. Shapiro’s work is interesting for a 

number of reasons but the main strength of her approach is the manner in which she 

offered a systematic analysis of the individual learning profiles of six children in a 5th 

grade (American) classroom. In order to conduct the study Shapiro spent extensive 
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amounts of time in the classroom becoming acquainted with the children, the 

participants were selected according to their ability to interact with the researcher. 

The final sample included three boys and three girls, of which two children were 

experiencing learning difficulties, two were rated as average ability, and two were 

rated as high achievers. The study utilised many different approaches including 

videotaping sessions, working through activities with the children and helping the 

teacher in the classroom. The final data analysis was drawn from repertory grid 

conversations and case reports. The results demonstrated that children in the study 

would apply biases on their learning which were heavily dependent on their 

personalities and predispositions. The children’s approaches to classroom activities 

were influenced by their personal approaches and their previous learning with the 

more outgoing children being happier to explore ideas whilst the more quiet children 

showed more reservation. Whilst interesting, it is difficult to see how the conclusions 

drawn from Shapiro’s study can be applied to formal assessments of classroom 

learning particularly as this qualitative approach was perfectly feasible within the 

context of a research project but is beyond the scope of possibility for a teacher in a 

mainstream school environment. There is no doubt that all teachers take some 

account of the children’s personalities and where possible their existing levels of 

knowledge when they are undertaking tuition. However, in a typical English school 

classroom of 30 children, teachers do not always have the time to make such 

individual assessments of students’ learning on a day to day basis.  

 

Despite the difficulties associated with the application of Kelly’s work discussed here, 

the clear advantage of the constructive alternativism approach is the understanding 

that this facilitates for the diversity of knowledge found in the typical science 

classroom despite children having received exactly the same tuition. This view of 

constructivism does not however, provide any detailed analysis of the underlying 

cognitive processes that support learning. With the evolution of cognitive science it 

was suggested that when considering learning it was useful to explore an information 

processing view. From this view it is important to attend to the role that a child’s 

memory, attention mechanism and behavioural performance can have on learning. 

One theory that takes all of these issues into account is evident in the work of Robert 

Gagné. 
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2.3.5 Gagné’s Cumulative Learning Theory 

 

Robert Gagné is best considered as a bridging theorist. Gagné took the best and 

most productive aspects of learning theory from the domains of cognitivism and 

behaviourism and embedded them in a constructivist framework of his own. Like 

other constructivist authors before him, Gagné asserted that learning was the result 

of the individual child’s cognitive effort to construct their own knowledge of the world, 

and that learning resulted from the child’s interaction with the external environment 

(Gagné, 1975). In agreement with behaviourist approaches, Gagné supported the 

notion that learning was characterised by changes in behaviour that were observable 

as outcomes of tuition: 

 

“…learning is process which enables organisms to modify their behaviour 

fairly rapidly in a more or less permanent way, so that the modification does 

not have to occur again and again in each new situation. An external observer 

can recognise that learning has occurred because of behavioural change and 

the persistence of this change.” (Gagné, 1975, p. 5) 

 

This quote from Gagné demonstrates his understanding of how learning may be best 

summarised and identified. This view of learning as observable changes in 

behaviour still persists in education today. Influences from cognitivism can be 

observed in Gagné’s explicit use of the standard information-processing model of 

learning and memory (see Figure 4). This particular approach was popular in 

psychology during the 1970s and many authors began to explore the way in which 

the limited processing capacity of the human brain could influence learning. 

 

According to Gagné’s information processing view there were a number of factors 

that could limit the processing capacity of the brain. These included attention 

mechanisms and memory mechanisms, most predominantly driven by short-term 

memory which acts as a buffer between the external world and the internal workings 

of the brain. A diagram of the typical interactions that are proposed to take place 

between different elements in the brain is provided (see Figure 4). According to this 

view, receptors in the brain pick up information from the environment; this 
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information is registered and passed to the short-term memory. Gagné attended to 

research investigating the short-term memory store (Millar, 1956). Millar’s (1956) 

research demonstrated that all short-term memory processes were restricted to a 

‘magic number’ of items that could be held at any one time, seven plus or minus two. 

Short-term memory is important for learning as this offers a temporary storage space 

in which information can be manipulated and related to previously held knowledge. 

Thus, if the short-term memory system is overloaded, items are lost or overlooked; 

the short term memory store is also subject to rapid decay so that items in this area 

that are not rehearsed will be lost and are not able to be recalled. The long-term 

memory contains the knowledge that is already possessed and is used to generate 

expectations, which is suggested to relieve the processing load. There is interplay 

between the two memory stores and both are responsible for generating responses 

to the incoming information. The responses produced, which are influenced by 

executive controls or higher order decision making, result in effectors and these have 

an impact on the external environment. Thus, information that is available to the 

learner acts as an input that is subsequently both stored and manipulated in order to 

produce responses. Fundamentally, Gagné’s contribution to constructivism was the 

application of the information processing theory and the development of an 

instructional model.  

 

 

Figure 4: The basic information-processing model adapted from Gagné’s Essential of 

Learning for Instruction (1975). 

 

In particular Gagné emphasised the processes of thinking and remembering in his 

approach and focused attention on the methods through which instruction could be 
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designed in order to take account of the restrictions that were placed on the learning 

process by the cognitive architecture of the child. Gagné’s approach to learning was 

comprehensive and elaborate and in order to explicate the multifarious processes of 

memory, attention and motivation Gagné suggested that there were discrete phases 

of learning (1975). Each phase of learning was associated with a particular 

behaviour on the part of the learner and a number of external events that can 

influence the opportunity for learning to take place (see Table 1). 

 

Learning Phase Process Influencing External Events 

Motivation Expectancy Communicating the goal  

Prior confirmation of expectancy 

through successful experience 

Apprehending Attention 

Selective 

Perception 

Change in stimulation to activate 

attention 

Prior perceptual learning or 

Added differential cues for 

perception 

Acquisition Coding 

Storage Entry 

Suggested schemes for coding 

Retention 

 

Storage Not known 

Recall Retrieval Suggested schemes for retrieval 

Cues for retrieval 

Generalisation Transfer Variety of contexts for retrieval 

cueing 

Performance Responding Instances of the performance 

(examples) 

Feedback Reinforcement Informational feedback providing 

verification or comparison with a 

standard 

Table 1: Gagné’s proposed phases of learning (1975), the processes associated with 

each phase and the external events that can be used by educators to facilitate 

learning.  
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These phases of learning made it possible to segment each learning episode in 

order to facilitate the educators understanding of the processes that learners may be 

undertaking. One critical element of Gagné’s approach was the ‘essential incident of 

learning’ (1975). This was hypothesised by Gagné to be the moment at which there 

was a change in the internal state of the learner from not learned to learned.  Not 

only did Gagné clearly specify phases of learning he also proposed that there were 

five qualitatively different types of learned capabilities. These capabilities were verbal 

information, intellectual skills, cognitive strategies, attitudes, and motor skills. Each of 

these different learned capabilities was accompanied by strategies that could best 

assist in their development, for example when teaching cognitive strategies 

opportunities for developing new solutions need to be provided, when learning 

attitudes exposure to a suitable role model provided suitable learning opportunities. 

Gagné’s model provided a more theoretical and empirically testable extension of 

Piaget, Vygotsky, Bruner and Kelly’s theories. Gagné’s work also laid the foundation 

that would appear in many different models of conceptual change developed during 

the 1970s and 1980s (for example, Osborne & Wittrock, 1983). 

 

In 1968, Gagné also proposed a cumulative learning model that sought to explain 

the way that complex principles were developed based on combinations of simpler 

principles, thus he proposed that learning was progressive and heavily reliant upon 

what was already known. Gagné applied his cumulative learning model to the 

sequence that would be necessary in order for children to attain the conservation of 

liquid (a topic previously studied by Piaget and interpreted in accordance with his 

stages of cognitive development). In his analysis of this concept, Gagné proposed 

that children would not be able to demonstrate the ability to conserve the volume of 

liquid until they learned a number of underpinning foundation skills. For example, the 

subordinate learning of the rule that length, height, and width determine the volume 

of a liquid provided it is in a rectangular container and an understanding of the 

concept of solids and liquids (see Gagné, 1968 for a full analysis). As such, Gagné’s 

analysis demonstrated that “prior knowledge is the determinant for what further 

learning can occur” (West & Fensham, 1974) and that a greater level of abstraction 

only becomes possible once certain foundational levels have been attained. This 

analysis was crucial to Gagné’s appreciation of how learning occurs. The inability to 
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complete a task is not due to a deficit or developmental factor, it is simply a reflection 

of the current level of cumulative ability that the child had attained.  

 

Gagné’s approach has been influential within research literature investigating 

science education. In an analysis of the influence of prior learning on attainment of 

scientific knowledge, West and Fensham (1974) proposed that Gagné’s analysis 

provided a logical structure through which educators could create an appropriate 

sequence of instruction. However, perhaps his most significant contribution has been 

through the work of Richard White. In White’s book ‘Learning Science’ (1988), 

Gagné’s ideas were firmly embedded within his own constructivist approach to 

learning science. White refers to Gagné’s proposal that prior knowledge provides the 

foundation for new skills and also draws on Gagné’s distinction between different 

types of skills in his analysis of memory structures. Importantly, however, White also 

critiques Gagné for viewing learning as free from contextual processes. White 

proposes that although key theorists such as Gagné make a positive contribution to 

understanding of how learning occurs, they neglect to take into account the impact 

that the social and physical environment can have on children’s learning.  

 

2.3.6 Ausubel’s Assimilation Theory  

 

David Ausubel, our final global theorist, developed his constructivist approach to 

learning within the field of educational psychology (Ausubel, 1968; Ausubel, et al., 

1978). Ausubel’s approach was another example of an early information processing 

view. However, in Ausubel’s writing a distinction between meaningful learning and 

rote learning was drawn. Notably, for Ausubel meaningful learning was proposed to 

be associated with deeper understanding and the ability to apply knowledge across 

contexts whilst rote learning was proposed to be heavily memory reliant and context 

specific. In their analysis of Ausubel’s approach to learning, West and Fensham 

(1974) proposed that rote and meaningful learning were opposing points on a 

continuum on which all learning takes place. The focus for Ausubel’s approach was 

firmly embedded in meaningful learning and the methods that could be used by 

educators to promote this form.  
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Ausubel, like others, significantly diverged from Piaget’s view of constructivism and 

suggested that the processes through which children acquire knowledge and 

develop new concepts were not stage dependent. Piaget’s notion of learning through 

assimilation was, however, retained in order to explain how new knowledge 

interacted with what was already known. For Ausubel assimilation, or subsumption 

as he termed it, was a significantly different process. In the Piagetian approach, 

learning by assimilation was a domain general process and influenced the entirety of 

the individual’s cognitive structure. In contrast, Ausubel proposed that learning in this 

way was only related to specifically relevant concepts (e.g. domain-specific rather 

than domain-general) and the process of learning in this way was perceived to be 

continuous process rather than occurring in discrete stages (Novak, 1977). Ausubel 

also stated that the primary determinant of learning was previous knowledge. In his 

most prolifically used quotation, Ausubel states that: 

 

“The most important single factor influencing learning is what the learner 

already knows. Ascertain this and teach accordingly.” (Ausubel, 1968: vi) 

 

Ausubel’s assimilation theory directly addressed the way in which prior knowledge 

influenced the processes through which subsequent learning occurred (West & 

Fensham, 1974). According to Ausubel’s assimilation theory, six basic principles 

apply: 

 

• subsumption; 

• superordinate / subordinate learning; 

• progressive differentiation; 

• integrative reconciliation; 

• obliterative subsumption; 

• advanced organisers. 

 

Subsumption was the process through which new information was organised or 

incorporated into existing knowledge structures. Thus existing knowledge acted as 

an anchor for the new learning. Ausubel proposed that this occured in a hierarchical 
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or categorical manner through the other processes to subsumption and knowledge 

that acts as a ‘subsumer’: 

 

“A subsumer is any concept, principle or generalizing idea that the learner 

already knows that can provide association or anchorage for the various 

components of the new knowledge.” (West & Fensham, 1974, p. 63) 

 

Hierarchical learning took place at a number of levels including superordinate, 

subordinate, and combinational. Superordinate learning took place when new 

learning enabled the individual to establish that existing concepts should be 

conceived of as more specific examples of an overarching concept. When learning 

took place in this way the definition of a new set of criteria attributes that 

encompassed the existing but now subordinate concepts existing within the 

individual cognitive structure were created (Ausubel, 1968). In contrast, subordinate 

learning was the process through which new information was linked to existing 

knowledge on a higher level of abstraction. Combinational learning differed slightly 

as this was a process by which new learning was derived from another concept or 

idea already existing in the cognitive structure but at the same categorical level (e.g. 

neither superordinate nor subordinate to the new information). This could occur by 

analogy.  

 

Progressive differentiation was defined by Ausubel as the process through which 

existing knowledge is refined and developed into smaller ideas or concepts. 

According to Ausubel, when teaching took place it was most effective if the simple 

ideas were presented first and then gradually built up in complexity, by giving more 

detailed explanations later the learner was able to gradually differentiate between the 

key concepts. Progressive differentiation predominantly occurred because of the 

connections that were formed between fragments of information. Integrative 

reconciliation was also a form of differentiation. Here it was the links and new 

relationships that were made between concepts that were important (McGriff, 2001). 

The process of obliterative subsumption underpinned forgetting and it was promoted 

by the inability of learners to dissociate new information from existing concepts. 

Ausubel suggested that the amount a learner could recall depended on the 

meaningfulness that was associated with the acquisition of new knowledge. Thus if 
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learners were unable to dissociate new information from that which they already 

have learned they were less likely to recall new information later on.  

 

The final principle that Ausubel proposed was the advanced organiser. Rather than 

discussing a learning process this principle addressed a method of using what was 

known about learning in order to support appropriate teaching practice. In order to 

ensure that children had some concept or subsumer to map or anchor new 

knowledge to Ausubel proposed that when engaged in the teaching process it was 

good practice to provide an ‘advance organiser’. The advanced organiser contained 

a summary of the concepts that the child would learn. Once the advanced organiser 

was in place it was then possible to begin to relate concepts to each other in the 

cognitive schema of the learner. For Ausubel, the term schema was used to define 

packets of connected ideas or knowledge. Schemas could be related to objects, 

actions or experiences. One interesting proposal of Ausubel’s that is infrequently 

discussed was that learners could experience an ‘initial learning shock’, this was 

when the new information was in conflict with what was already known and the child 

found it difficult to accept. The initial learning shock had an impact on what was 

learned as well as the way in which it was subsequently recalled. Thus such learning 

shock could result in alternative conceptions, errors or misconceptions.    

 

Ausubel’s approach is significant for science education for a number of reasons. 

Firstly, his approach suggested that significantly younger children than those 

identified by Piaget were capable of learning higher level concepts provided that they 

already possessed the advance organisers or the subsuming foundational 

knowledge required. Indeed, in his book Ausubel critiqued Piaget’s research and 

suggested that “With respect to learning theory, Piaget had little or nothing to say” 

(Ausubel, et al., 1978: p.230), Ausubel also stated that Piaget failed to specify in 

detail the process of assimilation and did not offer an explanation of exactly how the 

process of assimilation occurred. It was this lack of clarity that was fulfilled by 

Ausubel’s assimilation theory. In addition, at the heart of Ausubel’s theory is the 

notion of acquiring expertise that over time comes to reflect more intricate levels of 

complexity and more elaborated links with previous knowledge rather than reaching 

a predefined developmental level. This approach has particular resonance within the 

domain of science education where children are learning progressively more 
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complex knowledge and abstract concepts as they progress through their education. 

The application of Ausubel’s assimilation theory directly to science education can be 

attributed to West and Fensham (1974) who suggested that assimilation theory 

provided a framework that explained how prior knowledge influenced the processes 

of further learning and how alternative conceptions form.  

 

In their paper which reviewed the role of prior knowledge in learning science, West 

and Fensham (1974) also discussed the ways in which Ausubel’s assimilation theory 

could be applied to science education in order to support educators in their delivery 

of this complex and highly structured curriculum. West and Fensham (1974) identifed 

two generally agreed factors that influence what children will learn in their science 

education: what the learner already knows and their interest or motivation, which 

Bruner (1966) called the ‘will to learn’, for learning the subject matter. The authors 

proposed that these two factors were both necessary but insufficient for developing 

children’s understanding of scientific concepts alone. The focus of West and 

Fensham’s analysis is on the role that prior learning has on children’s development 

and support the view that Ausubel’s approach is a “‘useful’ theory of how prior 

knowledge influences learning of science” (p.62). In their analysis of evidence that 

covers a variety of research domains including investigations into cognitive structure 

change, computer simulations, the role of irrelevant subsumers and evidence for 

advance organisers, West and Fensham concluded that although this evidence 

could be open to alternative interpretation it was strong enough to support the 

application of Ausubel’s theory in science education. For example, a study by Ring 

and Novak (1971) which investigated the existing features of the cognitive structures 

in college chemistry students before and after college tuition revealed that the 

presence of subsumers before tuition positively supported the students’ later 

learning. A second study by Shovelson (1972) presented evidence to support the 

notion that during tuition on a physics topic the learner’s cognitive structure was 

significantly changed as learning occurred. This led West and Fensham (1974) to 

make a number of recommendations on the implications for teaching that were 

evident when viewing the learning of science from Ausubel’s perspective. The most 

fundamental of these was that the prior knowledge that children possess has a dual 

role in the learning process, “it sets basic limitations on what subsequent related 

learning can occur, and it influences how the learning can occur” (p.79). This view 
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was upheld by White (1988) who accredited the strong role that prior learning can 

have on science learning to Ausubel. White suggested that Ausubel’s approach 

demonstrated how prior learning could negatively influence children’s attainment of 

scientific concepts as it could support them in the construction of different meanings 

to those intended by the teacher.  

 

 

2.4 Discussion 

 

In this chapter, the historical roots of constructivism as developed by the European 

and North American schools of thought have been discussed (Piaget, 1928, 1929; 

Vygotsky, 1962, 1978; Bruner, 1966, 1971; Kelly, 1955, 1970; Gagné, 1975, 1985; 

Ausubel, 1968, 1978). In this discussion, it was revealed that for some the focus of 

their work was on key areas of scientific knowledge. For example, Piaget’s work had 

focused on ideas related to astronomy, causality and floating and sinking objects 

(Piaget, 1928, 1929; Inhelder & Piaget, 1958). Such work was directly and easily 

generalizable to a science education context. However, such work was also heavily 

criticised by some for ignoring the social influences that are at play in a classroom 

environment. The importance of social interaction and relationships was central to 

the work of Vygotsky (1962, 1978). For Vygotsky, all knowledge and concept growth 

began with interaction in the social world, a view that was echoed in the work of Kelly 

(1955) who stated that people were learning about events in the same way as 

experiences. Importantly though, Vygotsky also supported the notion that knowledge 

and concepts were represented in the mind of the child in the form of mental 

representations. Furthermore, it was these mental representations that changed as 

knowledge was developed. This view of changing mental representations featured 

heavily within the North American theorists’ work and for Bruner (1966), Gagné 

(1975) and Ausubel (1968), the formation of mental representations was important 

and links were made between these processes and the developing discipline of 

cognitive science. Importantly, however, Piaget’s work was used as a foundation for 

later developments such as the theories of Ausubel (1968, 1978) who used the 

process of conceptual development as a foundation in order to propose his own view 

of conceptual growth.  
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In contrast, other theorists’ work such as that presented by Kelly (1955), focused on 

the development of personal views of the world and as such may be harder to match 

to the science context. However, as demonstrated within this chapter, even though 

approaches such as Kelly’s may not have directly linked to children’s ideas in 

science, the underlying principles have still been applied at least in a research 

capacity (e.g. Shapiro, 1994). In general the influence of the founders of 

constructivism was wide reaching and had implications for many different subject 

areas. In order to sum up the discussion provided in this chapter the positions of the 

founders of constructivism are summarised for direct comparison (see Table 2). This 

summary explicitly aims to explore the importance of the founders in the 

development of constructivism as it is generally accepted in science education today 

and therefore the specific impact on science education has been included.  

 

All of the early founders of constructivism had some form of impact on education and 

there is evidence that most of their ideas can be seen to have influenced science 

education and indeed approaches used in the science classroom. These views, 

whilst offering slightly different perspectives on the learning process, all generally 

agreed that learning depended on the previous experiences that children have had, 

how new experiences are related to what is already known and how both of these 

are influenced by the social environment. However, these views are not without 

criticism and important work has proposed that much of the appeal of constructivism 

is based on its intuitive nature (Airasian & Walsh, 1997). Furthermore, others have 

attacked the umbrella term of constructivism that has been adopted by educators 

without due consideration to the range and that actually there are many different 

types and forms (Phillips, 1995). Such criticisms aside, by the late 1970s another 

revolution was about to unfold. This time the focus was purely based on science 

teaching and learning. The founders of constructivism gave rise to the domain-

specific perspective of Driver (Driver & Easley, 1978) which paved the way for 

alternative frameworks research that is still prominent in science education today. 

The next chapter discusses this in more detail and provides a broader critique of 

constructivism itself. 
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Author Name and Definition of 
Approach 

Key processes associated with knowledge 
construction 

Impact on science 
education and science 
education research 

Piaget 
 
(1929, 1958, 
1960, 1964, 
1967, 1975, 
1980) 

Genetic Epistemology – 
theory of intellectual 
development through 
cognitive stages. 

Knowledge is held in schemas, as new information is 
learned this is added to what is already known through 
two key processes: 
Assimilation - occurs when new information fits with the 
existing schemes held, thus new information is added 
into the knowledge that already exists. 
Accommodation - occurs when new information does 
not fit with the schemes that are held, learning in this 
way occurs when the existing knowledge is changed or 
new schemes created. 

Foundation for contemporary 
approaches to constructivism 
in science education (Driver 
et al, 1994). 
Influential in early curriculum 
studies. 
Basis for contemporary 
theories of conceptual 
change in science. 
Heavily critiqued because to 
its ages and stages approach 
to children’s knowledge 
development. 

Vygotsky 
 
(1962, 1968, 
1987) 

Sociocultural approach – 
highlights the importance 
of the social environment 
in children’s development.  

Interaction between adults and children in the learning 
environment are central components. Language is a 
fundamental mediator in children’s thought. New 
functions first occur within the social environment, these 
are then internalised and occur again on a psychological 
level. Distinction between spontaneous concepts 
(fragmented) and scientific concepts (highly organised). 
Everyday scientific knowledge consists of a piecemeal 
collection of descriptive and explanatory fragments 
rather than a consistently organised ‘theory’, tuition in 
scientific ‘school’ concepts provides the organising 
structure which supports the reorganisation of 
spontaneous concepts into theory like structures. 
Conceptual development occurs when information 
become more highly abstracted and organised. 

Applied in science education 
research by Hodson and 
Hodson (1998) in their 
sociocultural view of science 
teaching. 
Fundamental to Driver’s 
(1994) domain-specific 
constructivist view of science 
education. 
Used by Roth (2000, 2008) in 
the development of his 
understanding of how 
children learn from each 
other in science. 

Kelly 
 
(1955, 1963, 
1970) 

Constructive alternativism 
– used to suggest the 
unique view of the world 
that each individual has. 

Analogy of man-the-scientist, hypotheses about the 
world are formed and tested, this is how change takes 
place. Construction of knowledge occurs when the 
perceptual field is narrowed. Constructs (can be 

Applied in science education 
research by Gilbert ( 2005, 
Gilbert & Watts, 1983) 
through the formation of a 
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subordinate / superordinate) – are interpretation of 
events, channels through which mental processes run.  
These are created in response to experiences and 
facilitate prediction of the world of phenomena and are 
revised during change. Proposes condition favourable to 
change – use of fresh evidence, experimentation, 
availability of validating data. 

research group investigating 
the application of this theory 
to the educational context. 
Used as the theoretical 
background for Osborne & 
Wittrock’s (1983) Generative 
Learning Model. 
Foundation for Shapiro’s 
study of children’s 
understanding of the 
concepts of light (1994). 
Critiqued for its individualised 
approach. 

Bruner 
 
(1966, 1971, 
1986, 1987) 

Process of Education / 
curriculum theory – the 
view that appropriate 
sequencing, organisation 
and adaptation to suit 
learners current 
developmental level 
promotes learning. 

Knowledge is a process not a product. Spiral 
curriculum - to enable children to progressively build 
more abstract knowledge as they reencounter previous 
ideas. What children already know support later 
learning. Learner actively selects and transforms the 
information that they receive. Hypotheses based on 
what they already know are constructed and guide 
decisions. Cognitive structure (schema or mental 
models) are stored in memory. Cognitive structure is 
responsible for providing meaning and organisation to 
information and this enables the individual to go beyond 
what is given in order to generalise learning to new 
situations. 

Influential in the construction 
of the curriculum across 
subjects. 

Gagné 
 
(1968, 1975, 
1985) 

Information-processing 
view – a bridging 
approach incorporating 
elements of behaviourism 
and cognitivism in a 
constructivist framework. 

Focused on the way in which attention, motivation, 
memory structures can influence learning. Learning is 
the process that modifies behaviour. Discrete phases of 
learning each with its own proposed outcome. The 
essential incident of learning – the point at which the 
individual moves from a cognitive state of not knowing to 
a cognitive state in which learning has taken place. 
Five different types of learned capabilities each 
accompanied by their own strategy for effective 

Applied in science education 
research by White (1988). 
Focus is predominantly on 
effective teaching methods 
and raises the distinction 
between learning skills and 
concepts. 
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development - verbal information, intellectual skills, 
cognitive strategies, attitudes, and motor skills. 

Ausubel 
 
(1968, 1978) 

Assimilation theory – 
uses an information-
processing model (the 
analogy of mind as a 
computer) which takes 
account of the way in 
which memory skills 
influence learning.  This 
approach is suggested to 
be a weak form of 
constructivism (Ernest, 
1995). 

Focus on the distinction between meaningful and rote 
learning and the processes associated with these two 
forms. Previous learning is crucial to meaningful 
learning. Knowledge is held as concepts in memory, as 
learning occurs new concepts are added and existing 
concepts are related to each other. Advanced 
organisers – to give the students something to anchor 
new information to. Subsumption – the process of 
assimilation which occurs the following levels, 
Progressive differentiation, Integrative 
reconciliation, Superordinate learning - established 
ideas become more specific, and Subordinate learning 
– new information is linked to overarching ideas. Initial 
learning shock – impacts on what it learned and how it 
is remembered. 

Applied within Driver’s work 
on constructivism in science 
education (1994). 
Provided the basis for some 
contemporary theories of 
conceptual change in 
science. 
 

Table 2: An overview of the early global constructivist theories and their application to science education. 
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Chapter 3 Contemporary Constructivism: A Domain-specific 
Perspective 

 

 
 

3.1 Introduction 
 

This chapter provides an overview of the body of research that led to the 

development and proliferation of the contemporary view of constructivism that is 

prevalent in science education today. Firstly, Rosalind Driver’s important work which 

laid the foundation for the conceptual change movement is presented and evaluated. 

This work was enormously influential and with its inception marked the beginning of 

a new research area which aimed to map the ideas that children had for different 

science topics. The most influential science education research programmes and 

their contribution to the research field are discussed.  It is highlighted how such 

studies have been used in order to explore the way that children’s ideas change both 

over time and in response to instruction. This mapping of learning led to a 

conceptual change movement which used the background of constructivism to 

explore the processes that are proposed to underpin such knowledge change. This 

resulted in a number of models being generated. Some of the more important of 

these models are reviewed in the subsequent sections in this chapter and it is 

against these models that the results from the work in this thesis will be compared. 

These models of conceptual change also provide methodological insight that 

supported the development of the methodological approach detailed in subsequent 

chapters. This chapter then provides a critique of contemporary constructivism and the 

conceptual change perspective. 

 

3.2 Rosalind Driver: a Constructive Revolution 

 

Rosalind Driver is still widely regarded as one of the most influential figures within 

domain-specific constructivism and science education research (see Figure 2, page 

12).  If Piaget is considered as “the great pioneer of the constructivist way of 

knowing” (Glasersfeld, 1982) then Rosalind Driver is perhaps best conceived as the 

‘founding mother’ of the contemporary constructivist perspective.  In a career that 

spanned more than twenty years, Driver published an extensive body of work on 
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children’s ideas in science and prompted the conceptual change movement which is 

still considered to be one of the most fruitful research programmes today (Taber, 

2006).  Importantly, Driver’s work also spanned curriculum development (Driver & 

Oldham, 1986), attitudes towards science (Driver, et al., 1994), issues related to the 

development of scientific argument (Driver, et al., 2000) and processes in science 

learning (Brook, et al., 1989). Perhaps one of the key contributions of Driver’s work 

was the introduction of the metaphor of ‘student-as-scientist’ (Driver & Erickson, 

1983), which embodied the underpinning values of constructivism.  However, this 

view of student-as-scientist was not without its criticism.  Hodson (1998) has 

suggested, for example, that not all personally constructed knowledge is valid or 

indeed scientific.  Importantly, the goal of science education in school is not for 

children to construct their own scientific knowledge but for them to co-construct 

knowledge that is representative of requirements at different levels in the curriculum.  

Criticisms aside, Driver’s research publications and academic textbooks have been 

immensely influential in science teaching (for example Driver, et al., 1985; Driver, 

1993).  In her pivotal paper with co-author Easley in 1978, Driver reviewed a large 

body of research evidence as well as incorporated the results from her own doctoral 

thesis in order to critique the view that children held misconceptions regarding their 

scientific knowledge.  Driver asserted that negative connotations associated with the 

word ‘misconception’ neglected the underlying learning processes involved and the 

power which children’s intuitive science displayed.  Driver sought to replace the 

language of misconceptions by proposing that children’s ideas would be better 

perceived as reflecting alternative frameworks of understanding.  Alternative 

frameworks influenced what children would learn when exposed to formal tuition in 

the science classroom.   

 

In 1986 along with her colleague Beverly Bell, Driver arrived at the series of tenets 

which remain today. In more detail: 

 

• learning outcomes depend not only on the learning environment but also on 

the knowledge of the learner; 
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• learning involves the construction of meanings and meanings constructed by 

learners from what they see or hear may not be those intended (construction 

of a meaning is influenced to a large extent by our existing knowledge); 

• the construction of meaning is a continuous and active process; 

• meanings, once constructed, are evaluated and can be accepted or rejected; 

• learners have the final responsibility for their learning; 

• there are patterns in the types of meanings learners construct due to shared 

experiences with the physical world and through natural language. 

 

One problem with these tenets is that they do not clearly explicate the underlying 

mechanisms that support the learning process, a criticism that can also be applied to 

global theories of constructivism and which will be revisited later.  In a pivotal 

textbook exploring constructivist views of learning edited by Steffe and Gale (1995) 

Driver presented a chapter that somewhat clarified her thinking with regard to these 

underlying mechanisms. 

 

“The process by which knowledge is constructed by the learner is broadly 

surmised to involve a process of hypothesis testing, a process whereby 

schemes are brought into play (either tacitly or explicitly), their fit with new 

stimuli is assessed, and, as a result, the schemes may be modified.”  (Driver, 

1995, p. 387) 

 

However, this view that all children test hypotheses is subject to debate, not all 

learning is hypothesis driven and there is extensive evidence that children are 

capable of acquiring knowledge through other processes including rote learning 

(Ausubel, 1968).  However in this 1995 text, Driver emphasised the importance of 

scientific knowledge being constructed both personally and socially as well as being 

validated within a wider reaching community, for example through teachers or 

schools.  Thus, children’s ideas are not the solitary construction of an individual but 

rather reflect a process of, personal, interpersonal, and sociocultural interaction.  

Figure 6 summarises the way in which Driver (1995) conceptualised these three 

levels of constructivism interacting with each other.  At the core of the model, the 

personal constructivist perspective operates within the individual.  Personal 
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constructivism here is reliant upon the internal cognitive processes that operate in 

order to promote conceptual development (e.g. as proposed by Piaget, 1929).  

Personal constructivism is influenced by the interpersonal constructivism that 

embodies it.  At this level, personal meanings are challenged, negotiated, and 

clarified through interaction with adults and peers in the social environment (e.g. as 

proposed by Vygotsky).  It is at this level that issues related to curriculum and 

examination requirements impact on the knowledge and understanding that children 

develop.  At the most external level the wider scientific community tests and 

validates the current state of scientific knowledge as generated by individuals and 

research groups. This validation influences the acceptability of constructed meanings 

at both the interpersonal level and the personal level (e.g. as proposed by 

philosophers of science, Vygotsky in 1978 and Solomon in 1987).  Thus, all three 

views of constructivism interact in order to influence learning in a multifaceted 

manner.  

 

 

Figure 5: Embedded representation of the different levels of constructivism and the 

interaction between them in the development of scientific knowledge as proposed by 

Driver (1995). 

 

This interaction between conceptualisations on all three levels is the driving force 

behind the formal school learning process and the subsequent conceptual change 
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that takes place within the individual’s cognitive schema.  Driver’s proposal that 

learning is conceptualised as a change in the schemas or cognitive structures within 

the individual and her interest in the way in which children’s ideas in science develop 

and change over time promoted an extensive research programme investigating 

children’s ideas across a wide domain of scientific knowledge.   

 

3.3 The Influence of Research in Science Education 

 

Driver’s work acknowledged the importance of studying children’s ideas, at around 

the same time as her work was increasing in popularity the first of a number of 

influential projects aiming to map children’s ideas in order to improve science 

teaching began. What is clear is that unlike almost all other subjects in the school 

curriculum science education was quick to begin to explore constructivism and what 

this meant for teaching, learning and curriculum design. A number of influential 

research projects were undertaken which aimed to uncover how children learn 

science in detail for the first time and map the development of ideas across and 

between different age groups in order to begin to unpack how ideas change. There 

were many projects but the most influential of these are detailed in this review. The 

first of these influential studies was the Learning in Science Project (LISP). 

 

3.3.1 The Learning in Science Project (LISP) 

 

The New Zealand Learning in Science Project (LISP) took place between 1979 and 

1996. The project was funded by the New Zealand Department of Education and 

spanned five different research phases. The first phase of the project involved three 

stages: 

 

• interviews with those involved in education; 

• an exploration of the ideas that children bring to science; 

• an action research project which aimed to develop and research new 

pedagogies in biology, physics, chemistry and general classroom activities. 

 

This first stage of research was published by Osborne and Freyberg (1985) in their 

book ‘Learning in Science: The Implications of Children’s Science’. In addition to this 
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influential publication, the project also resulted in the development of Osborne and 

Wittrock’s Generative Learning Model (1983, 1985) which was both a view of the 

mind and of how learning takes place.  

 

The second phase of research had a specific focus on primary education. There 

were two specific aims to this phase of the project: firstly, to investigate the problems 

experienced by primary aged children when learning science, and secondly to train 

primary teachers so that they could effectively support children’s learning. The third 

phase focused on the teaching of concepts associated with energy as this spanned 

all three age groups within the New Zealand education system. The aim was for the 

research team to apply all that they had discovered with the younger children to a 

wider context. This phase of the project included the development of both a teaching 

unit for energy and an associated pedagogy. The fourth phase of the research 

project focused on teacher development and actively investigated ways that this 

could be supported. Bell (2005) reports that during this phase of the project four 

teacher development programmes and a total of 34 teachers of science took part in 

the training. The final phase of the project focused on assessment of learning. 

 

Overall, LISP made a substantial contribution to constructivism at the time. The first 

stage of the project alone resulted in the production of 13 working papers and a 

substantial body of journal publications for different science areas including 

electricity (Cosgrove & Osborne, 1985) and floating and sinking (Biddulph & 

Osborne, 1984).  At the same time as LISP was ending its second phase of research 

in 1984, science educators at the University of Leeds were beginning a broadly 

similar study, the Children’s Learning in Science Project (CLIS), which aimed to 

explore constructivist views of learning science in England. 

 

3.3.2 The Children’s Learning in Science Project (CLIS) 

 

The Children’s Learning in Science Project (CLIS) aimed to investigate children’s 

ideas for topics covered during school science and to use these in order to inform 

teachers’ practices in developing students’ understanding of these topics. The 

project, undertaken by a team of influential science education researchers including 

Rosalind Driver and Phil Scott, focused predominantly on early secondary education, 
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however, later publications considered children’s ideas between 5 and 16 years 

(Leach, et al., 1995). The research team worked alongside teachers to develop 

teaching schemes for three key science areas: energy, particle theory and plant 

nutrition. The project begun in 1984, included an influential publication describing a 

constructivist view of teaching and learning (Scott, et al., 1987) adopting key tenets 

from Driver and Bell (1986). These included that: 

 

• what is already in the learner’s mind matters; 

• individual’s construct their own meaning; 

• the construction of meaning is a continuous and active process; 

• learning may involve conceptual change; 

• the construction of meaning does not always lead to belief; 

• learners have the final responsibility for their learning; 

• some constructed meanings are shared. 

 

According to the constructivist view of teaching outlined by Scott, et al. (1987), the 

project concluded that in order to support children’s learning it was important for 

teachers to elicit children’s ideas before they begin teaching science. It was 

proposed that such elicitation was important for two reasons: firstly, for children to 

develop ideas it was important for them to explicitly consider them and secondly, 

because if teachers are aware of the children’s ideas they can plan teaching 

accordingly. Once children’s ideas have been revealed; teaching that challenges or, 

in the case of appropriate initial ideas, further support can be provided. This 

provision of tailored tuition was suggested to support the restructuring or application 

of children’s ideas. Once completed it was suggested that the final phase of the 

teaching loop could be entered. This phase was characterised by reviewing and 

consolidating any change in ideas. 
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3.3.3 The Science Processes and Concept Exploration Project 

(SPACE) 

 

The Science Processes and Concept Exploration Project (SPACE) was funded by 

the Nuffield Foundation and ran from 1986 to 1990. The project was conducted from 

King’s College London and Liverpool University under the direction of Paul Black and 

Wynne Harlen. The project had two underlying aims: firstly, to explore primary school 

aged children’s ideas for a number of science areas and secondly, to explore 

whether it was possible to help children change their ideas through the provision of 

appropriate activities. The project was a collaboration between teachers and the 

researchers, where the teachers helped devise methods for eliciting children’s ideas 

and establishing the techniques proposed to facilitate children’s concept 

development. A number of reports and teacher training materials resulted from the 

project as well as a clear definition of an approach to facilitating learning in the 

classroom (see Figure 6 for an overview). 

 

Figure 6: An overview of the SPACE approach to teaching that was generated during 

the project. 
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According to the SPACE approach, all tuition in science required the initial elicitation 

of children’s ideas, followed by a consideration of what these were in order to plan 

appropriate activities for subsequent teaching which should aim to facilitate 

children’s development of process skills as well as conceptual knowledge followed 

by an assessment of the changes made in order to plan further action. The SPACE 

approach to tuition bears striking resemblance to the constructivist teaching model 

first suggested by Scott, et al. (1987) during the CLIS project. Additional results from 

the SPACE project included the detailed mapping of the range of ideas that children 

had in the different concept areas including earth in space (Osborne, et al., 1994), 

electricity (Osborne, et al., 1991), forces (Russell, McGuigan & Hughes, 1998) and 

living processes (Osborne, Wadsworth & Black, 1992). However, one particularly 

helpful finding was the consistency across the range of ideas that children had 

across different schools and context. Through its massively influential range of 

curriculum supporting documents and reports the SPACE project had a substantial 

impact on primary science teaching. Whilst the three projects discussed above have 

all included some work investigating the usefulness of practical work in supporting 

children’s learning a more recent research project, the ASE King’s Science 

Investigations in Schools Project (AKSIS), placed its focus specifically on 

investigative work in science, the benefits that such work has for children and the 

problems that teachers encounter undertaking this form of work with children. 

 

3.3.4 The Association for Science Education King’s Science 

Investigations in Schools Project (AKSIS)  

 

The Association for Science Education King’s Science Investigations in Schools 

Project (AKSIS) funded by the Wellcome Trust began in 1997. The project which 

focused on investigative work in science, aimed to report on the current methods 

used in schools for teaching the nature of investigating work for children, identify 

successful practice and its benefits, identify areas where teachers experienced 

difficulty and review the National Curriculum, now well established for both positive 

and negative aspects. There were different phases within the research project and 

these included developing a framework, working with teachers to collect a range of 

data including teachers’ diaries, videos of lessons and pupils’ work, devising and 
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analysing a national questionnaire and working with teachers to improve practical 

work. It should be noted that this project was a specific departure from collecting 

children’s ideas and incorporated the skills aspect of science rather than just 

knowledge of concepts. Importantly, implicitly embedded in this work was the 

sociocultural context of learning. 

 

Through the research which included eliciting the views of 1000 teachers, 500 from 

Key Stage 2 and 500 from Key Stage 3, the project identified that six different types 

of practical science investigations were typically used within Key Stage 2 and 3 

classrooms, 7 to 14 years of age. These were: 

 

• fair testing; 

• classifying and identifying; 

• pattern-seeking; 

• exploring; 

• investigating models; 

• making things or developing systems. 

 

Interestingly the majority of practical science lessons were devoted to fair test 

investigations (50.4% at Key Stage 2; 82.6% at Key Stage 3). This led the 

researchers to conclude that an impoverished set of investigations were used at 

these two levels (Goldsworthy, et al., 1998a; Watson, et al., 1998b).  Other important 

results revealed by the project included: 

 

• no teachers used investigations to test out conflicting models; 

• there was often confusion amongst teachers and children regarding the 

language used to describe and discuss investigations; 

• less time was spent analysing and evaluating evidence than collecting it; 

• there was a mismatch between teachers’ aims for the investigations and 

the things that pupils consider that they learnt during the lessons. 

 

The conclusions drawn from the AKSIS project were published by the ASE and 

subsequently recommendations for practice were made through a series of 
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publications (Watson, 1997; Watson, et al., 1998). Overall, however, what the project 

did reveal was that where practical activities were used in schools, these focused 

largely on the development of process skills such as how to use equipment and 

accessing appropriate data rather than focusing on the development of conceptual 

knowledge and using practical work to support changes in concepts. Thus 

suggesting that practical work was not being used effectively to support changes in 

children’s ideas, which as a notion was fundamental to the domain-specific 

constructivist view of science developed by Rosalind Driver (Driver & Easley, 1978). 

 

3.4. Children’s Ideas about Electricity 

 

Like many other areas of science explored during the children’s ideas research 

studies on electricity were frequently investigated in order to uncover what children 

knew about these topics and how the instruction of these concepts could be 

supported in the science classroom. Electricity is considered to be a difficult subject 

for both children and adults to understand. This is partly because children are 

expected to learn abstract concepts that are not directly observable and because 

most activities connected to learning electricity make it possible to observe the 

effects of electricity but not the actual processes themselves (Shipstone, 1985). It is 

because of this difficulty that children’s ideas about electricity have been widely 

studied as part of most of the major research projects that have been undertaken to 

understand how children develop their ideas in this area and to improve teaching 

(Osborne, 1981, 1983; Solomon, 1985, Cosgrove & Osborne, 1985; Bell, 1991; 

Osborne et al, 1991; Shaffer & McDermott, 1992; McDermott & Shaffer, 1992; Fleer, 

1994; Cosgrove, 1995; Koumaras, Kariotoglou & Psillos, 1997; Kelly, et al., 1998; 

Psillos, 1998; Summerset, et al., 1998; Borges & Gilbert, 1999; Mulhall, et al., 2001, 

Clement & Steinberg, 2002; Sjøberg, 2002; Chiu & Lin, 2005; Finkelstein, 2005; 

Taber, de Trafford & Quail, 2006; Lee, 2007; Michelet, et al., 2007; Tsai, et al., 2007; 

Glauert, 2009). This review explores three important studies in more detail. 
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3.4.1 Shipstone’s Electricity in Simple Circuits Study 

 

Published in Driver et al.’s book ‘Children’s Learning in Science’, Shipstone (1985) 

discussed his research exploring children’s ideas of electricity concepts. Shipstone 

identified five potential models that a child might employ when describing current 

flowing in electrical circuits. These models were as follows: 

 

• the unipolar model – no current returns to the battery; 

• the clashing currents model – current flows to the bulb from both terminals of 

the battery; 

• the attenuation model – current flows around the circuit in only one direction 

and is used up in the bulb; 

• the sharing model – where there is a series circuit the current is shared 

between the components; 

• the scientific model – where there is an understanding that current travels in 

one direction through the circuit and is conserved. 

 

Each model, which was developed using his own results and the findings from 

previous studies, represented a different and unique conceptualisation of the way the 

children thought electricity worked in a circuit. In order to show how these models 

worked Shipstone presented the following diagram. This shows the flow of the 

current that children suggested operated in each of the different models (Figure 7). 

What was interesting was that Shipstone’s work revealed that the most prevalent 

models for electrical circuits observed in the younger children were the unipolar and 

the clashing model, both of which drop significantly as children get older (Figure 8). It 

was also revealed that the scientific model of an electrical circuit was rarely observed 

in the younger children but this became more prominent as the children got older 

(Figure 8). For example, by the age of 17 years just over 60% of the children 

interviewed used the scientific model to explain what they thought was happening in 

a circuit, whilst less than 10% of the 12 year old children used this model in their 

discussions. 
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Figure 7: Shipstone’s diagram representing the flow of current represented in the 

different models of electrical circuits discussed by the children in his study.  

 

Using data drawn from an 11 year-old-girl called Ann, Shipstone demonstrated how 

these models would be used in practice. One striking finding was that Ann would use 

different models depending on the clarity of the questions and the materials used 

during the probes. Shipstone proposed that the models used varied in popularity 

depending on the age and experience of his participants. In one example, Shipstone 

draws on research evidence from a study investigating the ideas for electricity that 

were present in secondary school and sixth form children at three schools and one 

sixth form college in the UK. All participating children had undertaken formal tuition in 

electricity that academic year. The results demonstrated evidence of all of the 

models with the exception of the unipolar model. Also drawing on data from a study 

in New Zealand, Shipstone proposed that the clashing currents model decreases 

with age and is less likely to be used. Interestingly Shipstone’s study also addressed 

the use of analogies in electricity teaching, including the use of the water flow 

analogy. Importantly, Shipstone noted that the usefulness of analogies during 



63 
 

instruction relied on whether or not children understood the original concept fully, for 

example if they did not understand water flow then they would find it difficult to 

understand how this model could be used to represent electricity in a circuit, and 

whether or not children used the analogy to support an existing misconception. 

These findings demonstrated the importance of teachers using the ideas that 

children had a starting point and ensuring that teaching aids such as analogies 

would serve to support knowledge development rather than distort or impair it. 

 

 

 

Figure 8: Graph of Shipstone’s results recreated from his publication in “Children’s 

Ideas in Science”.  

 

Thus when Shipstone explored the commonly used analogy between electricity and 

water, he found that 54% of the pupils in his study were able to observe the similarity 

between these two forms of phenomena. 33% of the participants claimed that the 

analogy was helpful for developing their ideas, whilst only 27% applied the analogy 

to their work. Perhaps the most staggering finding was that only 6% of the 

participants used the analogy correctly. These findings have serious implications for 

teaching approaches that could be used with children, some of which are discussed 

further in Shipstone’s work. 
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Overall this important work by Shipstone introduced a critical analysis of the potential 

models that a child could have and use when responding to prompts about their 

ideas for electricity. Evidence of the models identified for electrical circuits was found 

again during the SPACE project by Osborne et al. (1991). 

 

3.4.2  The SPACE Electricity Study 

 

The Science Processes and Concept Exploration electricity study (Osborne, et al., 

1991) aimed to investigate both the ideas that children had about electricity and how 

the development of these ideas could be supported through instruction. The SPACE 

electricity studies formed part of a wider research project which aimed to improve 

primary science teaching. The study took place in six London schools in the UK and 

involved infants (5-7 years), lower juniors (8-9 years) and upper juniors (10-11 

years). The study employed a range of strategies for investigating the children’s 

ideas. Clinical interviews were conducted with the youngest children and written 

responses were drawn from the older children.  

 

The study revealed that nearly all of the children defined electricity in terms of a 

specific purpose, with the older children identifying it as a universal ‘substance’ that 

had an ‘independent identity’. The younger children who participated in the study 

often associated electricity with heat and fire whilst the older children demonstrated a 

tendency to discuss its properties. In addition the results reveal that children also 

often discussed the danger associated with electricity, e.g. that it can give you a 

shock (Osborne, et al., 1991). Another aspect of the study explored how children 

drew electrical circuits, this revealed that children’s ideas fell into a number of 

categories, including: 

 

• a single connection – where children drew in one wire to connect the 

battery to the bulb; 

• battery connections, 1 device connection – where children drew in two 

connections at the battery but failed to acknowledge that the wires needed 

to connect to separate points on the bulb; 
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• 2 battery connections, 2 device connections – where children used the 

correct number of connections at both the battery and bulb but these were 

in the wrong place; 

• 2 correct connections shown – where the children places the wires 

appropriately; 

• no response – where the children failed to respond to the drawing tasks. 

 

What was also interesting was that when analysing the different drawings some 

children failed to use the same model across all questions, showing inconsistency in 

the way that they used their ideas about a circuit. This finding was consistent with 

Shipstone’s work (1985). Osborne, et al. (1991) also studied what children’s ideas 

about conductivity were. In order to do so the children were asked to comment on six 

items (three conductors and three non-conductors) as to whether or not they thought 

they would conduct electricity. In addition the children were asked to plan how they 

would test for this. Overall the study showed that upper junior school children were 

able to effectively judge which materials would conduct electricity, the same pattern 

(although proposed to be less pronounced) was true of the lower junior school 

children whilst the infant school children demonstrated no clear ideas about 

conductors and non-conductors.  The results also revealed that only the upper junior 

school children were able to propose an appropriate way that the materials could be 

tested for conductivity (e.g. using a complete circuit). It was found that the younger 

children either made no response or gave an incomplete response. Finally, the study 

also aimed to explore children’s ideas about the effect that more batteries would 

have on a circuit. This revealed that responses regarding the bulbs in the circuit 

appearing brighter were relatively rare. However, whilst this study was particularly 

helpful for identifying the children’s ideas about what electricity was Osborne, et al. 

proposed that the items used in this study failed to reveal children’s models for 

electricity in any great depth. Thus although in the responses of one of the children 

there appeared to be evidence for a new ‘pulse’ model of electricity the data was not 

able to fully support this. Interestingly, the authors concluded that whilst the study 

had revealed age differences in the ideas held, context effects were also evident.  
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3.4.3  Borges and Gilbert’s Study of Electricity Ideas in Secondary 

Students and Professionals 

 

This more recent study by Borges and Gilbert (1999) aimed to extend the work 

previously introduced and explore the mental models for electricity that were evident 

in a sample of 28 secondary age children (15 – 17 years old) and three groups of 

professionals (28 in total) who work with electricity on a daily basis. Borges and 

Gilbert proposed that previous studies which relied upon children constructing simple 

circuit and explaining what they thought was happening within them had only been 

able to reveal a partial understanding of the models that children had. This study 

aimed to tap into the participant’s understanding of what actually changes the 

models that children hold and how these vary with age in more detail.  

 

Borges and Gilbert used previous research to extend the range of possible models 

that a participant could reveal. Notably six models were identified as follows: 

 

• unipolar model; 

• two-component model; 

• closed circuit model;  

• current consumption model;  

• constant current source model; 

• Ohm’s model. 

 

These models begin with intuitive conceptions and build towards more scientific 

ideas data. The data used in the study was gathered using semi-structured 

interviews which consisted of a number of experimental situations. The aim was to 

use probes to undercover the individual’s understanding of concepts and beliefs. All 

participants responded to the same questions. The results revealed a number of 

different conceptualisations for electricity. These included: 

 

• electricity as flow; 

• electricity as opposing currents; 

• electricity as moving charges; 
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• electricity as a field phenomenon. 

 

The researchers concluded that these results served to show how the questioning 

used by researchers can influence the results that are revealed. Borges and Gilbert 

also concluded that the results of their study revealed that participants can hold more 

than one model for electricity and that they can apply these at different times in order 

to respond to the challenges in hand (e.g. context affects). However, the secondary 

school children were less likely to discuss electricity as a field phenomenon, whilst 

they were most likely to include discussions of opposing current, perhaps because 

their tuition was only to this level. Interestingly the professionals who participated in 

the study rarely used the flow and opposing currents models, instead they tended to 

talk about electricity in terms of moving charges and field. However, the results of 

this study have yet to be replicated with younger children and it is proposed that it is 

unlikely that early primary age children will discuss their ideas of electricity according 

to the opposing currents model outlined by Borges and Gilbert (1999) largely 

because this age group will not have received tuition at this level yet. 

 

Overall the results of the three studies reviewed here imply that children’s ideas 

about electricity tend to become more scientific as children get older, that early ideas 

tend to be focused on describing the purposes and functions of electricity rather than 

the properties of the physical phenomena. This work is particularly helpful as a guide 

for the methodology employed in the current study and is helpful in terms of 

identifying teaching approaches that might be used in the classroom. 

 

3.4.4 Comments on Children’s Ideas about Electricity 

 

The projects reviewed above all revealed a certain amount of consistency in the 

typical approaches that have been taken to measure children’s ideas for electricity 

concepts. In all cases mentioned the children were given some form of drawing 

completion task, some questions designed to uncover their ideas about electricity 

and in some cases the opportunity to test these out. According to the research 

reviewed to date this approach has been particularly helpful for uncovering the 

different types of models that children used when considering what will happen in a 

circuit. Overall, the results of these studies have consistently revealed that children’s 
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ideas about electricity develop from intuitive ideas to more scientific ideas over time. 

It is interesting to note that the development of ideas about electricity continues into 

adulthood and can be mediated by the profession that an adult has, for example if 

they use electricity in their daily work life then their approach to explaining how 

electricity works in a circuit will reflect this.  

 

The evidence suggests that younger children tend to focus on the effects of 

electricity rather than what it actually is and that they often perceive that electricity in 

a circuit is used up by the bulb and does not return to the battery, whilst older 

children typically acknowledge that the current is conserved and that it continues to 

flow around the circuit. One particularly interesting finding was the lack of apparent 

consistency with which children apply their models of understanding. In conclusion, 

children’s ideas for electricity is a well-researched topic, however, there are apparent 

difficulties associated with children’s ideas, mostly because these can be difficult to 

measure and because they can show a lack of consistency depending on the context 

of the questions used during interview or elicitation.  

 

3.5 Children’s Ideas about Floating and Sinking 

 

Unlike electricity, children appear to be able to more easily access the principles of 

floating and sinking through observation. Indeed many, if not all, children have some 

first-hand experience of floating and sinking objects. However, although floating and 

sinking is more obviously visible than the flow of electricity, the formal scientific 

explanation requires a knowledge of forces which is less concrete.  As with electricity 

there have been a number of significant studies investigating children’s ideas for 

floating and sinking (Inhelder & Piaget, 1958; Rowell & Dawson, 1977; Biddulph & 

Osborne, 1984; Smith, et al., 1985; Halford, et al., 1986; Howe, et al., 1990; Kohn, 

1993; Howe, 1998; Klein, 2000; Bloom, 2001; Havu-Nuutinen, 2005; Howe, et al., 

2007; Howe, 2009) three of which are discussed here as these have been 

particularly informative for the current work. The first study of note is drawn from 

Inhelder and Piaget (1958). 
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3.5.1 Inhelder and Piaget’s Law of Floating Bodies 

 

Inhelder and Piaget’s work (1958) investigated a wide range of topics, thus it is 

perhaps not surprising that they also studied children’s ideas about floating and 

sinking and related these to Piaget’s stages of cognitive development. Piaget’s 

clinical method was employed, during which the children involved were asked to 

classify objects according to whether they thought they would float on water or not. 

The children were then encouraged to test these items and summarise the results.  

 

Although the number of participating children is unclear, as is common with a great 

deal of Piaget’s early work, the results presented took the following forms: 

 

• contradictory or fragmentary explanations –in which the children 

incorporated multiple responses; 

• weight – which sometimes progressed from weight in absolute terms to an 

early conception of density; 

• type of material; 

• characteristic “weight” of the type of material;  

• density of the object – mass per volume; 

• density – of the object in relation to the density of the liquid. 

 

As with all of Piaget’s previous work, the youngest children were more likely to 

introduce contradictory or fragmentary explanations, whilst the oldest children were 

more likely to introduce discussions of density that were related to both the object 

and the liquid. These results were interpreted by Piaget in terms of his stages of 

cognitive development. Thus it was proposed that as children get older they become 

more aware of the factors related to both the object and the liquid in which they are 

placed. Interestingly, however, the work by Inhelder and Piaget does not discuss the 

important role that the forces of upthrust and gravity can have in floating and sinking, 

nor do they discuss water displacement. In addition, as with all of Piaget’s work, this 

study also appears to pay little regard to the influence of peers on the development 

of children’s ideas.  
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3.5.2 Howe, et al.’s Peer Interaction in Floating and Sinking 

 

Howe, et al. (1990) aimed to build on Piaget’s work on floating and sinking by 

examining what impact peer influences can have on the development of children’s 

ideas. The study recruited a total of 121 children from across four age groups, 8-9 

years, 9-10 years, 10-11 years and 11-12 years. All children were recruited from 

Glasgow in the UK. It is the pre-test to Howe, et al.’s study that is perhaps the most 

useful for the purposes of this review as it helps to reveal the developmental pattern 

of ideas related to floating and sinking that these different age groups of children 

held, however, the discussion will return to details of the post experimental changes 

towards the end of this section. All of the children participated in a semi-structured 

clinical interview. As with Inhelder and Piaget’s study, the children were first 

questioned about objects, then provided with an opportunity to test these objects. 

The children were all interviewed individually. The interview results were coded 

according to the following content: 

 

• failing to mention a physical property of the object; 

• mentioning a physical property of marginal relevance to object density; 

• mentioning a physical property partially relevant to object density but not 

showing understanding of density itself; 

• mentioning a physical property that approximated object density or 

comparing weight of the object with water; 

• comparing the objects’ density with water. 

 

Once all interviews were scored the children were grouped according to the models 

of understanding demonstrated. 58 of the children were grouped as appreciating 

properties partially relevant to density: 42 were grouped in transitional level between 

mentioning object properties that were partially relevant to density and mentioning 

properties of marginal significance: 18 children demonstrated more basic models 

than these; and 5 children demonstrated the more advanced model which was 

focused on density of the object compared to density of the water. These results as a 

whole appear to suggest that by late primary age the most common model found 

was one that incorporated properties of the object that are partially related to object 
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density. Following this pre-screen a total of 84 children were allocated to learning 

groups and encouraged to undertake a floating and sinking task during which peer 

discussions could arise, noted in the paper as study one. The children selected for 

the experimental element of the study were then given a post-test, which used the 

same materials but included some new questions. The results revealed evidence 

that children did alter their ideas about floating and sinking and there was strong 

evidence to suggest that the children could learn from discussion with peers who had 

differing but inadequate views of floating and sinking.  These results are interesting 

because they were the first to capture the importance of peer discussions for 

developing ideas in this topic, and they show that often it is more beneficial if 

children are exposed to different opinions even if these are scientifically incorrect. 

 

A second study was conducted with 72 of the children, once again allocated to 

groups for discussion and the completion of floating and sinking tasks, however, 

some new elements were added (for example, a real world instance about floating 

and sinking). The pre and post-test results were compared using analysis of 

variance, these statistics revealed that the children with differing but inadequate 

views of floating and sinking revealed the greatest change between the two 

measures. The evidence produced by these two studies supported the view that 

children’s ideas during primary school tend to be focused on the properties of the 

object rather than those of the liquid and that children may not be attending to the 

object properties that will help decide whether it will float or sink (e.g. its density). 

Interestingly in this study, as with Inhelder and Piaget, the researchers did not focus 

on ideas of water displacement or forces even though an understanding of these 

elements would be expected if children held a scientific understanding of the 

phenomena of floating and sinking.  

 

3.5.3 Havu-Nuutinen’s Conceptual Change in Floating and Sinking 

 

Havu-Nuutinen (2005) focused on the development of ideas for floating and sinking 

that were observable in six-year-old children. The study also investigated the way 

that these ideas could be developed using constructivist based instruction and peer 

and teacher discussions. 
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A total of 10 six-year-old children took part in the study, the sample drawn from a 

pre-school setting in Finland. The full project took place over three stages, a pre-

screen, instruction phase, and post-instruction interview. The aim of the pre-screen 

was to assess the ideas that the children already held. The children were asked what 

they thought the terms floating and sinking meant, what kind of objects float and sink 

and why, to draw objects floating and sinking, and make predictions about which 

objects would float or sink. The results of the interviews were audio recorded and 

later transcribed. The results revealed three outcomes evident in responses: 

 

• non-relevant and non-scientific explantations – no mention of physical 

properties or responses relevant to floating and sinking; 

• non-relational justifications based on weight, material or shape or air in the 

object and volume; 

• water-related justifications. 

 

It is interesting to note that, like other researchers discussed in this section, the 

categorisation scheme devised by Havu-Nuutinen does not include any discussion of 

forces or the role that these play in the phenomena of floating and sinking. This may 

be explained by the fact that these references were not used by children of this age. 

The children involved typically only used one property in their discussions of objects 

that float and sink prior to instruction. Only two children discussed the properties of 

the water in relation to the topic suggesting that at this age the children tend to 

attend to the properties of the object. Following the pre-screen the children were 

given instruction which was designed to help promote conceptual change in the 

children’s ideas by using a collaborative and guided discovery learning approach. 

Fundamentally, the instruction focused on using social interaction during the 

teaching sessions to promote aspects of conceptual challenge which would support 

later learning of the concepts. During the instruction the children were also given the 

opportunity to undertake discovery learning which is defined as taking an active role 

in observing, predicting, exploring and describing floating and sinking (Ausubel & 

Robinson, 1969).  Overall the results of the study demonstrated that following 

instruction the children had changed their ideas about floating and sinking with many 

of the children who had initially discussed the weight of the object as a reason for 
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floating and sinking, now being able to talk about the role that water had, for 

example, the children discussed the water ‘holding up’ objects. There was evidence 

overall that the children: 

 

“…used new concepts and their definitions were more accurate in the post-

interview. The children were more able to describe in detail their 

justifications…unsuitable concepts were corrected and better ones were 

defined.” (p.275) 

 

The study supported the notion that the application of instruction that was based on 

a constructivist approach could be successful in supporting children’s development 

of ideas, even when these children were quite young. The study also emphasised 

the importance of collaborative talk with both peers and teachers for helping to 

develop ideas that are more scientific and facilitating conceptual change. However, 

criticism can be raised against this study as it utilised data from a small number of 

participants, thus the results may not be particularly representative of all children’s 

ideas at this level and it may not be possible to find similar results within another 

sample of children this age. The categorisation system developed, however, was 

coherent and consistent with the previous research of Inhelder and Piaget (1958) 

and Howe, et al. (1990) even though it lacked detail of all aspects of science related 

to floating and sinking, for example, a discussion of forces and water displacement. 

 

 3.5.4 Comments on Children’s Ideas about Floating and Sinking 

 

The projects reviewed above all demonstrate a certain amount of consistency 

regarding the way that children’s ideas about floating and sinking have been 

explored. The typical approach taken in the literature was to ask children to define 

what they think floating and sinking is, what kind of items they think will float and why 

and then to provide an opportunity to test the items in order to check for accuracy. 

The results when taken as a whole appear to support the view that like electricity, 

children’s ideas about floating and sinking become more scientific as children get 

older. This is noted in the responses of the children, where typically the younger 

children focus on surface characteristics of objects and neglect to appreciate any 
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role that the water may have in the floating and sinking process. As children get 

older they also begin to discuss ideas such as density. Indeed work has 

demonstrated that young children can be taught certain aspects of density even if 

they are not yet able to understand the concept fully. What is perhaps more 

interesting is the neglect of most researchers to include a discussion of forces within 

floating and sinking activities, this may in part be explained by the placement of 

floating and sinking activities in the curriculum which prevent it from being 

incorporated into such discussions. That aside, the work discussed in this section 

does appear to make a strong case for the use of peer and teacher talk and 

collaboration in supporting the learning process and this supports the idea that 

greater attention should be paid to the social context in which learning takes. In 

conclusion, the review of the literature on floating and sinking revealed that this topic 

has received less attention than the electricity topic in the literature, however, as with 

electricity, children’s ideas become more scientific over time. The development of 

children’s ideas about floating and sinking can be supported through classroom 

discussions and opportunities to explore materials and their behaviour in water. 

 

3.6 Learning as Change: the Multifaceted Face of Conceptual 

Change Research 

 

The research discussed so far illustrates the depth and scope of children’s ideas in 

research. As discussed previously some studies have specifically aimed to explore 

how children’s ideas change and the processes that underpin such changes. 

Research investigating the processes that underpin conceptual changes originating 

with alternative frameworks as established by Driver led to an extensive and wide 

reaching research effort which continues today.  This effort resulted not only in a 

proliferation of outputs investigating children ideas in a wide range of science topics 

(Duit 2009 contains a recent list of publications) but also in the development of a 

number of models of conceptual change.  These models were developed from a 

diverse range of theoretical positions. Founded in the work of philosophers of 

science, Toulmin (1953), Feyerabend (1962) and Kuhn (1962) and who all discussed 

the ways in which scientific knowledge has become radically restructured throughout 

the history of science. This analogy has been extended to the changes that occur 

within in children’s concepts in order to explain the learning process (Driver, et al., 
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1994; Carey, 1986). In her review of earlier work, Vosniadou (1987 and more 

recently 2007) proposed that children cannot merely rely on the ability to memorise 

scientific facts if they are to attain an understanding of advanced scientific ideas. 

Instead, Vosniadou proposed that advanced conceptual understanding only occurs 

when children learn how to restructure their intuitive or alternative frameworks. While 

characterised as conceptual change, what was less clear, however, was the actual 

mechanisms that underpinned it all.  

 

Many authors have since produced models aiming to explain how restructuring 

occurs, ranging from, Osborne and Wittrock (1983) who incorporated an extensive 

body of research regarding memory and attention from the information processing 

perspective of cognitive psychology to Luffiego et al (1994) who developed a model 

founded on the principles of chaos theory suggesting that existing knowledge acts as 

powerful information attractors in order to facilitate later learning.  Whilst a full 

analysis of all of the models of conceptual change is beyond the scope of this 

particular work, details of some of the most prominent models of change identified in 

Figure 9 are summarised in Table 3. 

 

The models of conceptual change vary according the research that supports them 

and the theoretical backgrounds of those who have developed them. In many cases 

these different approaches appear to be capturing the same phenomena but offering 

different linguistic labels in order to explain subsequent findings. However, the 

linguistic labels that are attributed to conceptual change phenomena allude to 

qualitatively different levels of change. In Carey (1985), for example, the most 

extreme level of conceptual change is proposed to be strong conceptual change, 

whilst Vosniadou (1992) offers a perspective that accounts for radical conceptual 

change. 
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Figure 9: 12 models of conceptual change identified from the research literature. 

 

Using the linguistic labels alone it could easily be suggested that a radical change in 

conceptual structure is very different to a strong change, with the term radical 

implying a more fundamental, far-reaching restructuring process. The term strong in 

contrast suggests a powerful change but not necessarily one that alters the very core 

of the concepts that are held. Whether or not the models differ purely according the 

linguistic competencies of the theorists remains to be explored in detail.  

 

What is clear is that although all of the models discussed here have explanatory 

utility they cannot all be correct and remain to be tested formally. Nevertheless, four 

models have achieved prominence in the literature and these have relevance here 

(explored further later). Vosniadou, in particular, has reached prominence in the 

American literature and her model has been adopted by other theorists. The 

similarities and subtle differences are clearer when the models are considered in 

more detail. All four models are domain-specific views that resonate with the broader 

global theorists discussed in the previous chapter. To some extent all draw on the 

earlier models. These four important models will be used to tested through the data 

generated during this thesis:  
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• Vosniadou’s weak and radical restructuring; 

• diSessa’s knowledge in pieces; 

• Luffiego’s chaos in cognition model; 

• Karmiloff-Smith’s re-representation theory. 

 

These models were chosen because they help to illustrate the diversity of the field. 

Details of the other models of conceptual change identified in this work (shown in 

Figure 9, Table 3) were also included in important reviews such as West and Pines 

(1985), Limón and Mason (2002), diSessa (2006) and Vosniadou (2008) as well as 

in the original sources.  

 

3.6.1 Vosniadou’s Weak and Radical Restructuring 

 

Vosniadou has an extensive career history of investigating the development of 

children’s ideas in science. In particular she has focused on the ways in which 

children develop their mental models in astronomy. In 1987, Vosniadou and Brewer 

suggested that the processes of accretion, tuning, and restructuring identified by 

Rumelhart and Norman (1978) characterise “the changes that occur as a product of 

learning” (p. 52) rather than the actual acquisition processes that children employ 

when they learn new information. In order to explore the changes in conceptual 

structure that occur as children acquire knowledge in astronomy Vosniadou and 

Brewer (1992) conducted a cross sectional study with sixty children in three age 

groups (average ages 6:9, 9:9, 11:0). The study investigated knowledge through a 

mental models framework. Mental models are dynamic structures that are proposed 

to be used when answering questions or solving problems, they can be constructed 

ad hoc or held in the memory but are proposed to be constrained by underlying 

conceptual knowledge. The children completed a 48-item questionnaire that was 

designed to illicit access to the concepts that children held in relation to astronomy 

through both verbal answers and drawings of the earth. The results demonstrated six 

different mental models of the earth, these begin with a flat earth model and over 

time this becomes a scientifically acceptable sphere model.  
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Model of 
Conceptual 
Change 

What is 
conceptual 
change? 

What 
changes? 

How does it occur? Evidence for 
Model 

What is prior 
knowledge? 

Rumelhart & 
Norman’s Model 
of Conceptual 
Change 
(1978) 

The learning 
process that 
enables the child 
to bring new and 
old information 
into congruence. 

The schema 
structures 
that the child 
has. 

Three processes of change: 
Accretion – the addition of new 
information to what exists; 
Tuning – changes in the 
categories used for interpreting 
information, modification of 
schema; 
Restructuring – the 
development of new structures 
and the imposition of new 
organisation on existing 
structures. 

Hypothetical 
model 
proposed on 
the basis in 
order to 
explain 
previous 
research 
findings. 

Foundation for 
change. 

Chi’s Model of 
Category 
Change 
(1981) 

A shift in the 
category to which 
concepts are 
assigned – 
change as 
replacement or 
creation of new 
categories. 

Beliefs and 
mental 
models – 
from flawed 
to correct. 

Gradual process of repairing 
incorrect conceptions, 
suggests to frequently occur on 
the categorical level: 
Tree switching – concepts 
move between categories, 
sometimes this may involve the 
development of a new 
categorical structure in which 
the conceptions can sit; 
Branch hoping – concepts 
move up (into superordinate, or 
basic level categories) or down 
(into subordinate or basic level 
categories) according to the 
new importance that is 
attributed to them. 

Evidence 
drawn from: 
expert / novice 
problem 
solving in 
physics. 
The 
development 
of biological 
concepts in 
children. 

Obstacle to new 
learning. 
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Hewson’s 
Approach to 
Conceptual 
Change 
(1981) 

An interaction 
between existing 
conceptions and 
new information 
that requires 
reconciliation. 

Concepts. Three ways in which new 
information can be 
incorporated: 
Memorised by rote;  
Replace existing concept with 
new one and reconcile new 
conceptions with remaining 
information through a process 
of conceptual exchange; 
Reconcile existing conceptions 
through the process of 
conceptual capture. 

Case study 
evidence from 
a graduate 
tutor’s 
understanding 
of special 
relativity. 

The foundation for 
later learning. 

Posner, et al.’s 
Accommodation 
Approach 
(1982) 
 

A rational activity 
performed in 
order to 
comprehend and 
accept new ideas. 

The concepts 
that the child 
holds. 

Two processes of change: 
Assimilation – the addition of 
new information to what is 
already known; 
Accommodation – the 
replacement or reorganization 
of central concepts 
(Change instigated on the 
basis of, dissatisfaction with 
old concepts, intelligibility of 
new information, plausibility of 
new information and the 
fruitfulness offered by the new 
concepts).  

Interviews with 
college 
students 
undertaking 
problem 
solving 
activities. 

The conceptual 
ecology features of 
the child (consists 
and ideas rooted in 
epistemological 
beliefs) which 
influence interaction 
with new ideas and 
provide conditions of 
change in order to 
motivate 
restructuring. 

McCloskey’s 
Naïve Theory 
(1983) 

A change in 
theory that 
resembles the 
development of 
scientific 
knowledge. 

Concepts as 
coherent and 
theory like 
structures. 

Analogy is draw between the 
development of scientific 
theory changes and learning in 
a domain-specific field.  Model 
is light on descriptions of the 
actual processes. 

Experiments 
with college 
students, focus 
on physics.  

An alternative theory 
that requires change 
in order to comply 
with current 
knowledge in the 
area. 
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Osborne & 
Wittrock’s 
Generative 
Learning 
Approach 
(1983) 

A change in 
meaning / 
understanding 
induced by the 
need to predict 
and control 
events. 

The schema 
system that is 
held in long 
term memory. 

Links between experience and 
previous knowledge are made 
in order to generate 
comprehension models.  If 
these models are evaluated as 
useful they are subsumed into 
the schema structure. 

Hypothetical 
model based 
previous 
evidence. 

A driving force for 
motivation, attention, 
perception, and the 
generation of new 
models. 

Carey’s 
Acquisition of 
Expertise 
Approach 
(1985) 

A shift in domains 
specific expertise 
acquired over 
time when 
mastering a topic. 

Concepts 
contained 
within theory-
like 
structures. 

Two restructuring processes: 
Weak – adding new 
information to existing 
structures and increasing the 
connections between 
concepts; 
Strong – addition of new 
information, increase in 
connections and shift in core 
concepts of knowledge 
structures. 

Experiments 
with college 
physics 
students. 
Cross-age 
study of 
biological 
concepts with 
children aged. 

Foundation for 
change. 

Vosniadou’s 
Weak / Radical 
Restructuring 
Approach 
(1987 onwards) 

A change in 
theory. 

A change in 
the mental 
models that 
are applied 
when 
answering 
questions 
(proposed to 
reflect 
changes in 
the 
underlying 
theory). 

Two processes of 
restructuring: 
Weak – addition of new 
relations within conceptual 
structures, organisation of 
knowledge into abstract 
relational schemata; 
Radical – a shift in the theory 
held. 

Studies 
exploring 
children’s 
acquisition of 
astronomy 
concepts, one 
study in 
physics and 
recent 
application to 
mathematics 
education. 

Obstacle because it 
can give rise to 
synthetic models or 
misconceptions as 
well as vehicle for 
change. 

diSessa’s The process that A change in Changes in the relations College and Foundation of 
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Knowledge in 
Pieces Approach 
(1988 onwards) 
 

organises what is 
known into 
coherent theory 
structures. 

the 
structuring 
and 
coordination 
of the 
information 
held. 

between p-prims, the 
development of overarching 
structures which coordinate the 
p-prims (co-ordination classes 
and causal nets). 
There is a move from 
fragmentation to coherency. 

undergraduate 
physics 
students. 
Recent 
application by 
Taber (2008) 
to chemistry. 

disorganised 
knowledge. 

Karmiloff-Smith’ 
Representational 
Re-description 
Model 
(1992) 

The re-description 
of knowledge 
from implicit 
(tacit) and context 
bound to explicit 
and context free, 
a change in 
coding format. 

A change in 
the 
availability of 
knowledge 
across 
contexts. 

Initial knowledge is tacit and 
unavailable for verbal report 
both within the individual and 
to others. 
The context bound procedural 
knowledge is represented 
through a four stage approach 
so that it is transformed to 
explicit knowledge that at the 
fourth level becomes available 
for verbal report. 

Studies with 
very young 
children 
investigating 
object 
permanence 
and basic level 
physics 
concepts. 
Recent 
application by 
Phillips (2007) 
to the balance 
scale problem. 

Tacit procedural 
knowledge that forms 
the foundation of later 
learning. 

Claxton’s 
Minitheory 
model 
(1993) 

Change occurs 
through the 
development of 
new minitheories 
or through 
modification of 
existing 
structures. 

Minitheories 
which 
partially cover 
specific areas 
of experience 
(often tacit in 
children). 

Three processes: 
Accretion – adding new 
information to what is already 
known; 
Integration – changing the 
structure of what is known to 
incorporate new information; 
Creation – creating a new 
minitheory to cover the new 
experiences. 

Theoretical 
model based 
on analyses of 
previous 
research. 

A situation dependent 
way of thinking or 
acting.  

Luffiego’s The self- A change in Two processes of Sharp & Foundation of 
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Systemic Model 
of Conceptual 
Change 
(1994) 
 

facilitated process 
of evolution in 
cognitive 
structures. 

the structure 
and 
relationships 
of concepts 
contained in 
schema. 

restructuring: 
Weak – the addition of new 
information, changes in the 
relationships between 
concepts and modification of 
schema; 
Radical – change in attractor 
concepts, formation of attractor 
subschema. 

Kuerbis’ 
(2006) study of 
children’s 
development 
of astronomy 
concepts. 
Bloom’s (2001) 
study of the 
development 
of the concept 
of density. 

conceptual change by 
acting as an attractor 
for incoming 
information. 

 

Table 3: An overview of the most frequently cited models of conceptual change. 
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The diversity of responses collected from the children led to the authors’ assumption 

that children’s mental models are constrained by presuppositions and that in order 

for conceptual change to occur the presuppositions need to be reinterpreted within 

different framework.   

 

In their conclusion, Vosniadou and Brewer (1992) suggest that the change process 

is slow and gradual and may give rise to synthetic models. Synthetic models are 

proposed to reflect the child’s attempt to integrate new information into the existing 

framework. Vosniadou (1994) suggested that such a view may also explain why 

misconceptions occur.  

 

“Children’s misconceptions often reflect quite clearly these attempts to 

integrate conflicting pieces of evidence.” (Vosniadou & Brewer, 1987, p.55) 

 

Using these important findings Vosniadou proposed that restructuring could occur 

during children’s learning and that this restructuring can take place across two levels: 

 

• weak restructuring; 

• radical restructuring. 

 

Both restructuring processes are defined through examples which draw on the 

studies of expert and novices problem solving. Weak restructuring was proposed to 

occur when more or different relations between concepts were represented and 

through the organisation of knowledge into abstract relational schemata. In both of 

these instances, previous research by Chi, et al. (1981) had illustrated that experts 

and novices differ in this way, with experts demonstrating higher levels of 

organisation in their conceptual structure. In contrast, radical restructuring was 

proposed to occur when there is a shift in theory. Independent evidence for this view 

can also be drawn from studies which illustrate that experts differ from novices in 

terms of the theories that they hold, these theories differing in terms of structure, 

phenomena explained and individual concepts (diSessa, 1988;McCloskey, 1983). In 

order to fully explain the distinction between the two types of changes Vosniadou 

and Brewer (1987) stated: 
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“The development of knowledge in the child can be seen in similar terms, as 

the process of enriching and elaborating existing “theories” that can give rise 

to theory change, in other words weak restructuring. Occasionally, when the 

child is faced with major anomalies that existing conceptual structures cannot 

account for, a new paradigm is required, giving rise to radical restructurings.” 

(p. 54-55) 

 

The authors do urge caution when using the analogy of paradigm shifting to describe 

the notion of conceptual change and suggested that it is important for researchers 

and science teachers to remember that for children the aim is to integrate current 

scientific views with their own experiences rather than to independently arrive at new 

ways of ‘seeing’ as science progresses.  

 

In order to clarify their definition of radical restructuring, Vosniadou and Brewer 

stated that it can be considered to have taken place when the new schema differs 

from an older schema: 

 

• in terms of individual concepts; 

• in terms of structure; 

• in terms of the domain of the phenomena being explained. 

 

All three of these conditions are identical to those suggested by Carey (1986) who 

defined the process as strong restructuring. Significantly, applying Vosniadou and 

Brewer’s model of conceptual change to pilot findings (see later) it is possible to 

illustrate, support and provide empirical evidence of their position in floating and 

sinking (Figure 10).  
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Figure 10: A potential illustration of weak and radical knowledge restructuring 

(Vosniadou & Brewer, 1987) from pilot findings in children’s ideas about floating and 

sinking.   

 

3.6.2 diSessa’s Knowledge-in-Pieces Approach 

 

diSessa’s (1988, 1993) approach to scientific knowledge acquisition and concept 

learning also takes the view that the transition to scientific understanding involves a 

major structural change in knowledge rather than just a shift in content. diSessa 

proposed that intuitive conceptions of science can interfere with the learning of 

actual scientific information and as such learning science is difficult. One important 

aspect of diSessa’s work is the refutation of the notion of learners holding naïve 

theories in favour of fragmentation. Naïve theories of science learning favoured by 

McCloskey (1983) stated: 

 

“…people develop on the basis of their everyday experience remarkably well-

articulated naïve theories of motion. Further, we argue that the assumptions 

of the naïve theories are quite consistent across individuals. In fact, the 
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theories developed by different individuals are best described as different 

forms of the same theory”. (p. 299) 

 

In contrast, diSessa (1988) supported the view that intuitive science is: 

 

“…nothing much like a theory in the way one uses that word to describe 

theories in the history of science or professional practice. Instead, intuitive 

physics (sic) is a fragmented collection of ideas, loosely connected and 

reinforcing, having none of the commitments of systematicity that one 

attributes to theories”. (p.50) 

 

This led to diSessa’s proposal that children and novices have conceptual structures 

that consist of knowledge-in-pieces. When adopting this view it was proposed that 

intuitive science knowledge existed as a large number of fragments of information or 

even a small number of integrated structures. These fragments were called 

phenomenological primitives or p-prims and could be understood as abstractions 

from common experiences. According to diSessa, p-prims are small knowledge 

structures involving only a few small parts. In some cases these parts entail 

behaviour or are behavioural in nature. Importantly, p-prims provided the learner with 

a rich vocabulary through which people remember or interpret experience. P-prims 

are developed from an early age which leads to diSessa’s suggestion that although 

children do not enter into science tuition with theories they do have a select few 

example explanations that are utilised where necessary. By rejecting McCloskey’s 

naïve theory view, diSessa proposed that there was no coherence to what children 

knew prior to formal science instruction. However, because p-prims were developed 

through experience there was an importance to having awareness of these and this 

was extended to the view that also suggested that experience (as felt internally) was 

important to tuition. diSessa (1988) stated that: 

 

“We cannot expect to have students learn things that are radically distant from 

their current state of understanding… Nor will they learn things that have a 

radically different character…” (p.61) 
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The initial evidence for the existence for p-prims was drawn from a series of 

interviews with twenty physics students over a three year period. All the students 

were selected for their achievements in high school physics. Interviews took place 

for an hour each week during the student’s first-term on their physics courses. The 

students were asked to apply ‘think aloud’ protocols during problem solving tasks. 

‘Think aloud’ is a technique designed to enable researchers to gain insight into the 

students’ thinking. The student is prompted to articulate all of their internal thought 

processes during the task so that underlying conceptual structure can be uncovered. 

The resulting evidence supported the claim that novice physics students do not 

appear to hold consistent initial theories. Instead, and consistent with diSessa’s 

predictions, students at this stage of tuition applied different ‘packets’ of knowledge 

depending on the characteristics of the problems that they are attempting to solve.  

 

This approach to conceptual change suggested that in order for change to occur the 

p-prims must become more systematically organised as well as covering greater 

aspects or different domains of experience. In order to explain this re-organisation 

diSessa (1998) proposed two additional types of conceptual structure: coordination 

classes and causal nets, both of which may be involved in the process of conceptual 

change. Thus, within diSessa’s approach to conceptual change there are three 

hierarchical levels of abstraction (see Figure 11 for an illustration of the application of 

diSessa’s model to pilot study results which provide empirical evidence of children’s 

ideas for floating and sinking. For diSessa it is the organisation, relationships and 

explanatory scope of abstractions that change when children learn science.  
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Figure 11: A potential illustration of knowledge restructuring according to the 

development of p-prims, coordination classes and causal nets (diSessa, 1988) from 

pilot findings in children’s ideas about floating and sinking.   

 

As previously mentioned, the first level of abstraction is p-prims which are small 

knowledge structures that contain a limited capacity to explain experiences at the 

most basic level. Coordination classes are defined as encompassing sets of p-prims, 

the coordination class contains information regarding the relations between the p-

prims and strategies for coordinating these in order to solve problems. The next level 

of abstraction, causal nets, are proposed to bear more resemblance to scientific 

ideas and are the overarching structuring in which coordination classes and their 

constituent p-prims are contained. diSessa proposed that “the separate changes in 

readout strategies and in the causal net constitute parameters of conceptual change” 

(p. 1175). Thus it was proposed that conceptual change is characterised by changes 

in the p-prims, the development of or changes in the depth and scope of the relations 

between p-prims as contained in the coordination classes, as well as the 

development of or changes in the overarching theory structures, the causal nets. 

diSessa’s understanding of conceptual change, therefore, is coherent with other 

perspectives of conceptual change. In agreement with other authors on conceptual 

change diSessa proposed that due the unique experiences that children bring with 

them to science tuition, learning scientific concepts is difficult and takes time. 
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diSessa’s model is complex and valuable, offering an important insight into the 

possible development of new ideas and the way that these may become organised 

through experience, this resonates somewhat with the ideas of global constructivists 

such as Vygotsky (1978). However, diSessa’s approach is less common than 

Vosniadou’s perhaps because of the complexity of the language used in the 

description of knowledge changes, or perhaps because diSessa’s work focused on 

older learners and some feel it is less applicable to children.  

 

3.6.3 Luffiego’s Chaos in Cognition 

  

In 1994, Luffiego, et al. proposed an intriguing model of conceptual change which 

builds on the premises of the General Systems Theory (Bertalanffy, 1968) and holds 

the central premise that conceptual construction is systemic and chaotic in nature. 

This systemic and chaotic model suggested that the brain and its learning 

capabilities could be best understood when viewed in analogy to other self –

regulating systems, including for example, the weather.  

 

According to this model, the cognitive system of the learner is responsible for the 

selection, processing and storage of information. The nature of the information 

stored is specific to the individual and exhibits unique and variable characteristics 

that reflect the individuality of experience. The conceptual schema or knowledge 

structures that children hold are not only a simple record of information but tools for 

studying reality and as such have their own dynamics that are independent of input 

from the external world. The systems are open and receive information from the 

external world of phenomena. In order to enable the child to understand this 

information the conceptual system produces answers that permit the prediction of 

events and problem solving abilities. Conceptual understanding of phenomena 

evolves iteratively through different states. Each state is a function of the previous 

state and the variables that influence it. Therefore it can be assumed that the 

conceptual system is influenced by numerous variables including motivation, 

information received and existing conceptual structures. In order for learning to take 

place it is proposed that the relationship between the phenomena in the external 

world and the individuals underlying conceptual understanding never have balance, 

balance would make information input impossible. In its functioning, the cognitive 
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system is proposed to be dynamic and non-linear. A key characteristic of dynamic, 

non-linear systems is that they exhibit the properties of chaos. When chaos theory is 

applied to learning in this way the result is that the nature of the conceptual structure 

from science learning may be unpredictable, in addition the conceptual structure will 

be sensitive to the so-called ‘butterfly effect’ (Lorenz, 1993). The ‘butterfly effect’ 

refers to the sensitivity that dynamic systems have to initial conditions. When applied 

to a child’s learning in science the model proposes that the conceptual structures 

undergoing change may be sensitive to the initial conditions under which the learning 

has taken place and therefore take different pathways. In addition, it is difficult if not 

impossible to identify which of the initial states may be linked to or facilitate the 

changes. 

 

Luffiego, et al. proposed a number of characteristics of the non-linear dynamics of 

the cognitive system which include the key assumption that new information is 

organised around ‘attractor’ concepts. These attractor concepts already exist within 

the learner’s conceptual structure. The term attractor is taken from language used in 

Dynamic Systems Theory and refers to the idea that within the dynamics of chemical 

or biological systems there is a tendency towards a final state or ‘attractor’. The 

conceptual schemata that exist within the child’s cognitive structure act as 

information selectors and analysers and their scope of application and explanatory 

mechanisms will be mediated by the attractor concepts that they contain. Non-

linearity results from the interaction between the already held conceptual schema 

(which resist change) and the information input that causes instability and provokes 

change. One arising feature is that the concepts transmitted during tuition can 

acquire different meanings for the learner than those that are intended. Such 

proposals explain how children with similar initial alternative frameworks go on to 

learn different things (e.g. Sharp & Kuerbis, 2006; Sharp & Sharp, 2007). 

 

In this model, the cognitive system based on the input of new information goes 

through stages of stability and instability during its evolution. These stages are 

proposed to occur as follows: 
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• Stage of stability – the cognitive system appears stable before the input of 

new information, if change occurs once this is complete the system returns to 

stability again; 

• Stage of instability – as new and conflicting information enters into the 

cognitive system it disturbs the parameters that already exist. As a result the 

system abandons stability. This can be translated into Piagetian terms as 

moving away from equilibrium. When the system moves away from 

equilibrium it is able to reach a maximum level of instability, the resulting 

pattern with exhibit the qualities of chaos. The initial attractor concept is not 

able to anchor the new information and it branches off in order to give rise to 

new possibilities. Importantly, here the term chaos does not refer to disorder it 

just suggests that the exact nature of evolution of the concepts is 

unpredictable at this stage. It is within this stage that the system is sensitive to 

the ‘butterfly effect’.  

 

Luffiego, et al. (1994) proposed a number of features that will arise in learning as a 

result of considering learning through this approach: 

 

• the reorganisation of the system may affect the whole schema or just part of 

it; 

• as conceptual evolution takes place the schemata acquire progressive 

complexity; 

• other subschemata are formed which also have less powerful attractors;  

• the subschemata play a role in supporting the stability of the conceptual 

structure. 

 

These features are proposed to make the system more sensitive to the information 

coming in and thus, the cognitive system can be described as propelling and 

facilitating its own evolution. 

 

When adopting this perspective children’s prior ideas have an important role, these 

are powerful information attractors that are formed early in development through 

internalization. Later when formal education is encountered these concepts grow 
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more formal. Initial notions change from being mainly perceptive to incorporate 

entities that are not directly observable and as the child takes part in social 

interaction the intuitive cognitions begin to acquire descriptive and explanatory value. 

Luffiego et al proposed that: 

 

“…instability is controlled by the biased processing of information, the strategy 

of predicted conformation and either the voidance of anomalous evidence or 

consideration of this as specific cases”. (p.309) 

 

Luffiego, et al. identified three types of learning taken from Rumelhart & Norman, 

(1978): 

 

• accretion; 

• tuning;  

• restructuring. 

 

Like others before them, Luffiego, et al. proposed that these are three different 

manifestations of the same conceptual dynamics. In addition it is proposed that in 

order to make changes the incoming information needs to be relevant, if it differs 

from the schema already held it promotes tuning and restructuring otherwise the 

process would be simple accretion. In order to understand the difference between 

these types of learning Luffiego et al make a two point distinction between 

adjustment (the processes of accretion and tuning) and restructuring (see Figure 12 

for details). 

 

Adjustment was conceptualised as the modification or reorganisation of conceptual 

schema on a small scale, the attractor central or nucleus from which meaning is 

derived remains the same. Luffiego et al proposed that this form of modification of 

conceptual structure is best understood as weak restructuring. Thus Luffiego’s work 

could be seen to build on the ideas of Vosnidou and Brewer (1987) presented 

earlier. 
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Figure 12: The different forms of change proposed by Luffiego, et al. (1994).  

 

 

Restructuring, on the other hand, is a large-scale modification of the nucleus or 

attractor of the schema such that it is replaced by another, a process that is referred 

to within the paper as radical restructuring of conceptual information. As specified by 

Luffiego et al: 

 

“Therefore, the explanatory mechanisms of the schema vary; the concept 

meaning are either modified or they acquire a different degree of relevance 

within the whole system. The latter’s scope of application undergoes sizeable 

variations.” (p.310) 

 

Importantly, adjustment is a requirement for restructuring to happen and individuality 

in learning is explained by the view that information that may be irrelevant for some 

people may be amplified in others, thus timing and the results of tuition are 

unpredictable. As adjustment is an important prerequisite for restructuring to occur. 

The two processes are mutually supportive in the development of conceptual 

change.  

 

Luffiego et al have not currently published any research to support their proposal but 

they did make clear suggestions for how this model could be tested. Two recent 

studies have explored learning from a chaos in cognitive perspective and provide 
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some support for the notions contained in this approach (Bloom, 2001; Sharp & 

Kuerbis, 2006; Sharp & Sharp, 2007). It could be proposed that this particular model 

offers more explanatory power as it combines elements of constructivist thinking with 

evidence. 

 

3.6.4 Karmiloff-Smith’s Representational Redescription Theory 

 

Karmiloff-Smith’s (1992) approach to understanding children’s knowledge growth 

aimed to build on Piaget’s work. Like Piaget, Karmiloff-Smith proposed that 

children’s knowledge growth results from an evolutionary rather than from an 

revolutionary process and it is argued that information is stored in the child’s mind in 

several different ways. Karmiloff-Smith proposed that environmental input plays a 

vital role in the development of ideas; most notably acting as a trigger for the 

development of innate knowledge. Innate predispositions provide a skeleton 

structure that influence attentional biases towards specific stimuli. Over time, the 

model proposes that some knowledge becomes encapsulated and less accessible, 

whilst other knowledge becomes more accessible. Whilst Karmiloff-Smith agrees 

with the idea that some knowledge change occurs through explicit theory changes 

such as those proposed by Carey (1985) in her model of conceptual change, she 

also states: 

 

“But I will argue that this more obvious characteristic of human cognition is 

possible only on the basis of prior representational redescription, which turns 

implicit knowledge into explicit knowledge.” (p. 16) 

 

In essence conceptual change occurs spontaneously and in response to the data 

received from the external environment. Karmiloff-Smith (1992) explicitly states that 

her approach is best considered to be a phase theory of learning which attempts to 

explain the processes of change that are used throughout the lifetime rather than a 

stage theory reflecting age-related sensitivities and skills. She argues that 

development is characterised by three recurrent phases. The first focuses on the 

information received from the environment, as such this phase is data driven and 

provides the foundation for the ‘stock’ of knowledge representations that an 

individual possesses. This first phase results in ‘behavioural mastery’ or successful 
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performance, which relates to the ability to apply the new knowledge. However, at 

this stage such knowledge is not available for explicit discussion. The second phase 

is characterised by a shift from being data driven, information being drawn from the 

environment, to being driven by the internal representations. In this phase the 

existing representation is used over and above incoming stimuli from the 

environment and this phase can be characterised by the development of new errors. 

Finally, during phase 3, the internal representations are reconciled with new data 

from the external environment and a balance is achieved. Fundamentally, Karmiloff-

Smith proposed that: 

 

• information is encoded in procedural form; 

• the procedure-like encoding are sequentially specified; 

• new representations are independently stored; 

• level 1 representations cannot be related other representations (p. 20). 

 

Once base-line knowledge has been formed this must then go through a process of 

redescription which enables ideas to be related to other ideas and to become more 

accessible to the child and available for explicit and verbal, report. What is most 

interesting about the approach is the underlying premise that children have 

knowledge that is implicit or tacit and conceptual change occurs when this 

knowledge is re-represented in order to transform it into a mode that is available for 

conscious recall. Fundamental to this approach is the idea that children have 

knowledge that is stored unconsciously, they are not able to report this knowledge 

but they do use it when solving problems. It is only by re-representing such 

knowledge into a verbal form that children are able to explicitly access their ideas 

and report them during interview or task based situations. The representational 

redescription theory is proposed to take place through four implicit (I) and explicit (E) 

levels: 

 

• I level – information is encoded procedurally and the child has no awareness 

of or understanding of their actions; 

• E1 – forms the basis for theories to be constructed, innate knowledge is now 

defined and represented internally, however, although this level contains 
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explicit knowledge the child is unable to explain why they use certain 

approaches; 

• E2 – in this phase the unconscious representations are encoded into 

conscious representations, the child can carry out the actions but may be 

unable to explain why they have done so; 

• E3 – this level incorporate both conscious awareness and the ability to explain 

this verbally. 

 

In terms of the development of science ideas, this model proposes that children may 

unconsciously have an understanding of science concepts, and they may be able to 

successfully complete science activities, but they may not be able to successfully or 

fully articulate the ideas that they have because they are not mentally represented in 

a format which is available for this form of report. Karmiloff-Smith (1992) presented 

some support for her theory in her book “Beyond Modularity”, here she details how 

evidence for her approach can be gleaned from her work with children investigating 

knowledge of gravity and the law of torque using a series of balance scale problems. 

The results of this study revealed that the 4-5 year old children were able to 

complete the balance scale tasks easily, the 6-7 year old children struggled to 

balance any block other than those which had equal weights, and the 8-9 year old 

children were successful at completing all of the tasks. Karmiloff-Smith interpreted 

this evidence as showing that the youngest were using behavioural skills to complete 

the tasks, the mid-age children were applying their knowledge from a mental 

representation and this resulted in their reduced capacity to complete the task (e.g. 

they were ignoring the feedback from the environment and just applying their internal 

representations of the knowledge). Finally, the oldest children were able to fully 

complete the task as they were able to reconcile the theory with the feedback from 

the external environment. Whilst this work supported the proposals of the phases of 

learning it did not necessarily tap into the ideas of representational redescription. As 

yet studies investigating aspects of Karmiloff-Smith’s theory have been sparse.  

 

Replication by Philips (2007) and Philips and Tolmie (2007) explicitly explored 

whether or not changes in children’s representations could be mediated by parental 

input, importantly they explored if children who received verbal descriptions during 
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the tasks could use this information to successfully re-represent their own ideas. This 

study utilised the same balance scale problems that Karmiloff-Smith (1992) 

discussed and provided children with different levels of tutoring. Over the course of 

three studies the authors were able to show that children who had received explicit 

verbal tutoring demonstrated more explicit representations in their discussions of the 

problems and demonstrated more advanced concepts than their peers who had not 

receive such tutoring. 

 

3.7 Critiques of Conceptual Change Approaches to Learning 

Science 

 

The models of conceptual change discussed in this chapter help to illustrate some of 

the diversity that is present within the field of conceptual change research so far, 

however, despite the widespread appeal of constructivism and notions of conceptual 

change there are many criticisms that must be considered (Suchting, 1992; 

O’Loughlin, 1992; Derry, 1996; Marshall, 1996; Nola, 1997; Geelan, 2006; Niaz, 

2008; Mercer, 2008). This chapter now turns to a discussion of some of these 

criticisms. Fundamentally, despite its widespread appeal, constructivism is not 

without criticism of both its application and its bias towards ‘meaningful’ learning 

(Ausubel, et al., 1978).  In one paper, Millar (1989) suggested that the view of 

learning had been invalidly associated with a constructivist model of instruction that 

does not follow logically from the view of learning.  Driver (1989) had previously 

suggested that by making children aware of their conceptions and introducing 

conflict it may be possible to support the construction of new ideas (also see Bell, 

2005, for information of pedagogies developed from constructivist research).  

However, there is limited evidence that such teaching methods are effective (see 

Matthews, 2003 and Matthews, 1994 for a critical analysis of such views) and 

Osborne (1996) suggests that Driver’s view lacked clear guidance.  Airasian and 

Walsh (1997) warn that the application of constructivism is particularly challenging. 

Constructivism does not translate so easily into classroom practice, nor does it form 

a substantial basis for pedagogy.  Matthews (2003) extends this criticism by 

suggesting that because teachers adopt constructivism they ignore other teaching 

approaches for which research support exists.  This worrying trend in education is 

echoed in Taber’s critical paper (2006).  Taber proposes that the constructivist view 
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is so widely accepted that statements adopting this perspective directly influence the 

curriculum and standards documents produced for English schools despite a lack of 

appropriate research in this area (see Matthews, 1994 for a critical discussion of 

constructivism in relation to curriculum issues).   

 

Despite Driver’s claim of Children as Scientists, Osborne (1996) warned against this 

metaphor and stated that it is important that children learning school science should 

not be confused with ‘leading edge’ scientists, as they work and think in different 

ways, for children they are developing existing knowledge and skills whilst ‘leading 

edge’ scientists are developing new knowledge and skills.  Notably, children are not 

being taught to construct new scientific knowledge but to acquire the existing science 

knowledge that is incorporated into the curriculum.  In addition, Osborne suggested 

that the boundaries of constructivism remain untested and that the conceptual 

complexity of the information to be learned and developmental issues influencing 

attainment were often ignored.  The notion of children’s ideas as a coherent body of 

knowledge are also challenged (Millar, 1989; Solomon, 1983).  Millar (1989) 

suggests that children’s knowledge is best considered as a body of fragments whilst 

Solomon (1983) suggested that there are two ‘worlds’ of knowledge, scientific and 

life knowledge.  According to Solomon these two forms can be contrasted and result 

in qualitatively different structures that are subject to context effects (also Solomon, 

1987).  One final criticism of the constructivist approach is that despite its powerful 

account for how learning takes place it neglects elucidation of the underlying 

mechanisms that support changes in cognitive structure.  This lack of explanatory 

detail instigated the development of the conceptual change models as detailed 

above.  

 

Conceptual change models did progress constructivist views but they are also 

subject to criticisms.  The previous discussion considers four contrasting views of 

conceptual change. Each of which has a distinctly different view of the underpinning 

processes that support knowledge growth and highlights many of the underlying 

debates within this area. Some work (for example, Taber, 2008) has begun to try and 

reconcile these differences. Taber (2008) used learning patterns from chemistry to 

propose that there was evidence for the application of both Vosniadou and Brewer’s 

perspective (1987) and diSessa’s view (1988) in the same data, notably according to 
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Taber, students do begin by developing p-prims, it is these that are later organised 

into theory-like structures and then subjected to weak and radical changes following 

tuition. Importantly, Taber (2008) also alludes to the proposal that perhaps it depend 

what level of depth such learning is explored at, if the micro-level is explored then 

diSessa fits best. The critical discussion presented here debates the various models 

along with those summarised previously (table 3).  Analyses of these models 

suggest that in many cases these different approaches appear to be capturing the 

same phenomena but offering different linguistic labels in order to explain their own 

domain-specific findings.  However, these linguistic labels attributed to the 

conceptual change phenomena allude to qualitatively different modes of change, for 

example in Carey’s approach (1985) the most extreme level of conceptual change is 

termed ‘strong’, whilst Vosniadou (1987) discusses ‘radical’ conceptual change.  It 

could be suggested that a radical change in conceptual structure is very different to a 

strong change.   

 

Whether or not the models differ purely according the linguistic competencies of the 

theorists’ remains to be explored in detail, it could also be proposed that the different 

ages of participants involved, the methodologies employed, the analytical 

frameworks used, the interpretation and the science domains studied may also have 

an impact. However, it is also possible that these models differ because of the level 

of mental representation at which they investigate knowledge acquisition.  It could be 

suggested that change events at theory level (McCloskey, 1983; Carey, 1985) can 

easily be categorised differently to the changes that occur at concept level (diSessa, 

1988), these are not directly comparable forms of mental representation. The view 

that there may be a disparity in the levels of mental representation studies is 

consistent with a perspective proposed by Clement (2008).  Critically, it is important 

to note that this problem of a lack of clarity regarding the form of representation 

investigated has been highlighted previously (diSessa & Sherin, 1998).  diSessa 

deliberately outlined his own definition of a concept in order to highlight and begin 

debate in this area although as yet there has been little further work undertaken to 

reconcile these differences.  It could also be suggested that the models are not 

comparable on the basis of their evidence, each model utilises responses from 

different science areas, and for example, diSessa (1988) discusses ‘traditional’ 

physics whilst Vosniadou discusses astronomy.  It could be suggested that learning 
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in each of these concept areas is qualitatively different.  These debates regarding 

comparability of the models limit their utility for informing teaching practices. 

 

 

Additional criticism of conceptual change models challenge both their 

conceptualisations of the change process and discuss limitations encountered when 

focusing solely on cognitive processes.  In one influential paper, Linder (1993) 

suggests that rather than conceptual change the data that is found in such studies 

could be reconsidered as ‘conceptual appreciation’.  In other research, the cognitive 

approach to change was challenged because of its lack of consideration for 

motivational variables.  Although some authors including Osborne and Wittrock 

(1983, 1985) had previously suggested that motivation played a role in the 

processes of conceptual change, Pintrich, Marx and Boyle (1993) were the first 

authors to explicitly incorporate such variables.  Pintrich, et al. (1993) reviewed a 

wide domain of research in order to investigate the role that four motivational 

constructs, goals, values, self-efficacy, and control beliefs, in conceptual change.  

The work built on Garner’s (1990) proposal that motivational and contextual factors 

were likely to influence the activation of previous knowledge, and the transfer of 

appropriate knowledge to the current learning situation.  Pintrich, et al. criticised pure 

cognitive models for their failure to account for what may happen if children were not 

motivated to change what they already knew in light of formal tuition.  In their 

conclusion, the authors proposed that their research had raised four potential 

problems with conceptual change models: 

 

• prior knowledge plays a paradoxical role in conceptual change – it can 

impede conceptual change as well as support it; 

• the conceptual change ecology metaphor is limited as it does not take 

account of students’ intentions, goals, purposes and beliefs; 

• the conceptual change model postulates four conditions for conceptual 

change, dissatisfaction, intelligibility, plausibility and fruitfulness (Posner et al, 

1982) but it ignores the influence that motivational constructs can have on 

whether or not the conditions are met; 
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• the validity of the metaphor of student-as-scientist assumes that the intentions 

of all students and classes of students are analogous, some students may not 

want to learn science or may not have the motivation to tackle the 

complexities of the subject matter. 

 

Although Pintrich’s research did not specify a new model for conceptual change, nor 

did it generate any new research supporting its claims, it did promote subsequent 

interest in the incorporation of motivational constructs into the existing cognitive 

conceptual change models, a research approach characterised as intentional 

conceptual change (Sinatra & Pintrich, 2003).  This new line of research resulted in 

the development of ‘hot’ models of conceptual change (for example Dole and 

Sinatra, 1998).  Whilst the impact of motivational factors is important this current 

work aims to explore the cognitive processes underpinning knowledge construction 

and change. Other criticisms of conceptual change research include contextual 

issues, for example, Vosniadou (2007) highlights that context can play and important 

role in the learning process and it may influence the type of information recalled. 

Notably, this position was previously discussed by Solomon (1987) who stated that 

children rely on the context of retrieval in order to decide how they will discuss their 

knowledge; for example, in a social situation it is highly unlikely that children will use 

scientific terms to discuss their ideas about the world as this would be inappropriate.  

 

Despite strong criticisms, however, there is some multidisciplinary evidence that 

supports the constructivist perspective. In a pivotal paper in 1992, O. Roger 

Anderson presented evidence drawn from neuroscience which linked functions and 

structures in the brain to the processes that have been described in constructivist 

approaches. Anderson’s work highlighted that the complex functions that occur 

within the central nervous system could permit learning that was based on 

experience. According to Anderson’s research the cognitive processes of the brain 

such as attention, perception, short term and long memory all appear to be 

supportive of this view. The importance of Anderson’s research was further 

enhanced in 2009 when he presented a neurocognitive theory of science education. 

In this pivotal paper presented a model of information processing which was based 

on a large corpus of neurological evidence, Anderson also highlighted approaches 
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that could be taken to enhance science learning. Anderson’s Model is based on the 

following principles: 

 

• knowledge is actively created through interaction with sensory experience and 

is in part unique to the cultural and educational history of the individual – 

active construction takes place by relating new information to pre-existing 

information in memory; 

• knowledge construction is mediated through social dialogue whereby linguistic 

communities, often with a common cultural heritage, share information thus 

arriving at a consensus explanation of experiences and sensory phenomena; 

• while logical proposition can be evaluated as true or false, the merits of 

constructed knowledge are judged by how well it promotes adaptation and 

survival in a given environment; 

• learners are not merely shaped by our environment, but are active 

participants in defining who they are through building explanations of 

themselves, their communities and the natural environment surrounding them 

(Anderson, 2009). 

 

Importantly, Anderson proposed that in order to support the children in constructing 

new ideas teaching should aim to incorporate the principles defined above whilst 

paying attention to factors related to brain function such as short term memory load, 

and attention mechanisms. 

 

Whilst Anderson’s model reflects the impact of neurological research and the support 

that it can offer to the constructivist perspective, Roth (2000) has recreated 

constructivist learning in computer-generated neural networks. Neural network 

research attempts to recreate brain processes by using computer modelling to 

represent neurons firing in the brain. According to this research learning and 

knowledge in the brain is characterised by the simultaneous firing of neurons, the 

more that the neurons fire at the same, the more likely they are to wire together 

(Robertson, 2000). This wiring process builds relationships between the neurons 

which are thought to represent the ways that ideas and concepts become related in 

the brain of the individual. Using simulations from neural network studies, Roth 
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(2000) concluded that the research supported the constructivist perspective and that 

learning occurs through typical experiences. Roth’s model of constructivist learning 

is summarised as follows: 

 

• knowledge is not simply stored – knowing is enacting – learning is activity 

dependent – learning occurs as the cognitive system engages with the thing 

to be learned; 

• knowing is situated – learning influences perception – this leads to different 

perceptual experiences for each learner, different learning starting points and 

different trajectories. 

 

According to Roth there is evidence that cognition cannot be thought of as 

something that just occurs in the head of the individual, instead it is an interaction. 

Thus, cognition is to be understood as a complex dynamic arising from the structural 

coupling of the system and the environment. According to Roth, children’s ideas 

develop through the process of conceptual change which is slow and the changes 

occur along multiple dimensions. Roth proposes that such conceptual change takes 

place through two processes: conceptual redeployment where shifts between 

already existing conceptions occur and conceptual discontinuities which are 

relatively rare.  

 

Thus whilst constructivism and its proposals can be debated, there is significant 

evidence that the overall claims of the constructivist approach have received 

significant support not only in science education research but also in neurological 

studies of the brain and simulations of brain processes during learning.  

 

 

 3.8 Discussion 

 

This chapter reviewed the contemporary constructivist view of Rosalind Driver. It was 

proposed that for the first time, the status of children’s ideas had been raised and an 

appreciation was beginning to emerge regarding the importance of science 

educators’ understanding of these ideas if teachers were to effectively support 
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instruction. Driver’s work was instrumental in generating interest in children’s ideas. 

During this time the first of a series of important science education research projects 

was being established some of which she led. These influential projects together 

with the body of studies exploring children’s ideas about electricity and floating and 

sinking formed the foundation of how children’s knowledge acquisition and concept 

learning changes over time. This led to the development of a new and innovative line 

of enquiry which aimed to map how such conceptual changes occurred. Four of the 

resulting models of conceptual change were reviewed in this chapter. Whilst it is 

acknowledged that are many more to consider these four appear to be the most 

popular and representative of the diversity of approaches reflected in the literature. A 

critical appraisal of these different approaches was presented together with a 

number of reasons why so many models had arisen. These included differences 

based on the science topics studied, the age and educational level of the participants 

in the research projects, and the disciplinary biases of the researchers. Finally, in 

order to evaluate the constructivist perspective, this chapter addressed some of the 

key criticisms of constructivism and conceptual change. 

 

What seems clear is that a conventional method of study for identifying children’s 

ideas and mapping the changes within them became popular in the body of literature 

reviewed. The work reviewed in this chapter therefore acts as a foundation for the 

development of the research project undertaken for this thesis. The body of evidence 

exploring children ideas about electricity and floating and sinking were fundamental 

for informing the design of the main research phase (see Chapters 4 and 5). The 

work in this thesis aims to build on this research foundation but it also adopts a more 

social approach to understanding how changes in children’s ideas occur as well as 

attending to a multimodal approach in which a different range of response types will 

be measured (see later discussion). One of the criticisms of the constructivist 

approach is the tendency to lean towards language and language-based responses. 

These issues will be addressed further in the next two chapters. In addition there are 

clear ontological and epistemological considerations to be addressed. Ontologically, 

it is clear from the diverse body of research that children’s ideas for different science 

concepts are important. Epistemologically, children’s ideas can be identified and 

categorised according to their content and this can help to reveal how their ideas 



105 
 

change. In the next chapter the methodology and overall design of the research 

undertaken for this doctoral level work will be introduced. 
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Chapter 4 Methodology 1: Overall Design and Other 

Considerations 

 

 
 

 4.1 Introduction 
 
 
In this chapter the overall design and general methodology of this thesis are 

introduced. The literature focusing on constructivism in science education was 

presented in Chapters 2 and 3. In these chapters the underpinning theoretical and 

philosophical assumption that children are active constructors of their own 

knowledge was deliberated. From the literature reviewed it is clear that this approach 

to understanding learning has been adopted in science education and most 

educators in contemporary science education research now accept a constructivist 

approach as central to appreciating the factors that impact on teaching and learning. 

From an ontological perspective it was clear that children’s ideas are important. They 

are fundamental to both teaching and learning and because of this epistemological 

assumptions regarding whether these ideas can be categorised were discussed. 

One interesting finding from the literature review was the dominance of both single 

and multiple-method techniques for eliciting children’s ideas in order to map the 

ways that these may change either over time or in response to tuition. However, 

whilst this work has been useful for supporting understanding, as yet few studies 

have explicitly aimed at capturing the moments of change in children’s ideas. Rather 

they aim to capture the changes in ideas after they have happened post-hoc. This 

gap in the research emphasises that as yet the actual processes and mechanisms of 

change are still uncertain as there is no clear, moment by moment mapping of 

change as it occurs. This research is explicitly designed around an approach that 

aims to explore the following research questions: 

• does a multimodal analysis of verbal and non-verbal communication 

facilitate a better understanding of children’s ideas in science? 

• can such analyses be utilised in order to explore and contribute to an 

understanding of the dynamics of conceptual change? 
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• do the outcomes from the work in this thesis have any classroom 

application? 

 

As previously suggested an overarching question is also proposed regarding 

whether it is possible to apply a multimodal lens to the issue of conceptual change in 

science education. In addition this work develops a method and an analytical 

framework which is designed to capture such moments of change. As previously 

stated Chapter 1 these research questions also propose an overarching question 

regarding whether or not it is possible to apply the multimodal research lens to the 

issue of conceptual change in science education.  

The importance of method is addressed using traditional approaches to studying 

children’s ideas. These approaches are critiqued using findings from a recent pilot 

study which will be discussed in more detail later in this and the subsequent chapter. 

Ideas from a multimodal research perspective and a subsequent discussion, 

evaluation and critique will demonstrate how the multi-method approach used 

throughout this work was developed. As with all research projects, the current work 

requires introduction, description, justification and critique of the methods adopted in 

order to explore children’s ideas.  Hitchcock and Hughes (1995) supported the view 

that the methodology associated with any research is of fundamental importance. 

The methods chosen influence any study or project and impact on the later decisions 

taken with regard to analyses and interpretation.  This chapter discusses the most 

frequently used methods for collecting data in children’s ideas research and critiques 

these in light of other research findings.  This critique demonstrates that although 

contemporary research has significantly developed our understanding of how 

children’s ideas for science emerge and evolve, there is still the potential to continue 

to develop our understanding if we attend to children’s responses in a more holistic 

manner.  In order to continue to drive science education research forward it is 

proposed that by developing a new methodological approach, notably a multimodal, 

task-based approach, which facilitates such a holistic understanding whilst 

maintaining the context of the science classroom, we may be able to further inform 

the current debates on conceptual change as discussed in Chapter 3.  The results of 

a recent pilot study are used to exemplify the development of this new method as 

well as to illustrate the utility of this evolving methodology and its analytical 

framework (see Chapter 4).   
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4.2 Ontological and Epistemological Perspectives 

 

The epistemological and ontological assumptions of the researcher can have a 

substantial influence on the way in which the research project is designed and the 

type of questions that the researcher aims to explore (Gilbert, 2001; Cohen, et al., 

2011; Arthur, et al., 2012). According to the work reviewed here already there is 

clear evidence of the ontological validity of children’s ideas, and this research field is 

well established having resulted in the epistemological assumptions regarding the 

presentation of children’s ideas and the way that these can be captured. Ontology in 

science education has been defined as the assumptions made by the researcher 

regarding what it is possible to know about the world (Gilbert, 2008).  At its most 

extreme, ontology can be explored through the dichotomy between positivist and 

interpretivist perspectives (Gilbert, 2008).  The positivist view supports the notion 

that the aim of research is to extrapolate general theories about the world by testing 

boundaries and hypotheses, which can then be generalised to whole populations.  In 

contrast, the interpretivist view supports the notion that it is only possible to capture 

meaning which is local, within a historical context and contingent to the research 

participants (Gilbert, 2008).  The ontological assumptions of the researcher can have 

a significant impact on the type of design that is adopted in order to undertake 

research, however, as Gilbert (2008) warns researchers’ ontological and 

epistemological beliefs do not necessarily map to specific research methods.  Whilst 

ontology focuses on what it is possible to know, epistemology focuses on 

assumptions about the nature of that reality and brings into question whether or not 

the external world is stable and measurable or subject to individual interpretation and 

developed through social interaction and collective understanding (Gilbert, 2008). 

Epistemology, sometimes referred to as the theory of knowledge, addresses issues 

about what knowledge is and how it is acquired.  

The same ontological and epistemological debate can be applied to the research 

detailed here. The constructivist perspective used as a foundation for this work 

asserts that knowledge is personal construction that is based on experiences with 

the world, however, such knowledge construction also has social elements which are 

important as they guide the construction of knowledge and facilitate mutual 
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understanding (Driver, 1995). Firstly it can be questioned whether children’s ideas 

hold any ontological significance at all. The research to date would appear to build a 

strong case that supports the view that children’s ideas do have ontological 

significance and indeed by assessing these ideas it is possible to observe and chart 

children’s development (see Chapter 3). In addition, as this thesis also explores the 

importance of children’s gestures, it can be debated whether such incorporation (e.g. 

the analysis of gesture) is appropriate to the research design. Ontologically it can be 

questioned not whether gestures exist at all, as they clearly do, but whether gestures 

contain meaning and value for permitting access to children’s underlying ideas. 

Epistemologically it is possible to question how a researcher can access gestures, 

whether gestures contain any evidence of children’s ideas at all, and how any 

analyses addressing gesture can be interpreted for meaning. Ontological and 

epistemological debates aside, previous research has presented a strong case for 

the existence of gesture and for the ability of researchers to tap into this 

communication strategy in order to identify something about the knowledge and 

ideas that children have (Crowder and Newman, 1993; Crowder 1996; Goldin-

Meadow, 2000; Roth and Lawless, 2002) a more detailed discussion of gesture will 

following in the next chapter.  Thus it is proposed that gesture is worthy of 

consideration and study. 

Whilst the philosophical debate between ontological and epistemological 

perspectives continues to promote argument and dogmatic approaches to research 

design, it has also been suggested that it is perhaps better to focus on research as a 

craft rather than a reflection of philosophical beliefs (Gilbert, 2008).  Adopting the 

research-as-craft approach supports the view that methods should be adopted 

because they are appropriate means of achieving the research aims and Mercer 

(2005) provides an example of this approach in practice.  This pragmatic and 

balanced or pluralistic approach draws on positivist and interpretivist insights forms 

the foundation for the current research. Furthermore this approach draws on both 

quantitative or normative and qualitative or interpretive research paradigms.    

Whilst pragmatism as an approach is also debated, Mertens (2003) discusses issues 

related to the provision of satisfactory answers and the individuals for whom these 

apply (Johnson & Onwuegbuzie, 2004). The current approach aims to make the 

research useful to others (e.g. teachers and researchers) working in an educational 

context by exploring the multimodal manner in which children express their 
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knowledge.  Here it is important to note the differences between multimodal research 

and multiple-method approaches. Multimodal research aims to explore the different 

modes of communication that are used and the different affordances that each has 

for reflecting knowledge (Jewitt, 2011) whilst multiple-method approaches tend to 

use different approaches to research such as the collection of drawing, verbal 

discussions and activities in order to triangulate the findings for consistency (Arthur, 

et al., 2012). The current project adheres to a contingency theory that accepts that 

all methodological approaches exhibit some superiority under different 

circumstances (Johnson & Onwuegbuzie, 2004).  Thus, this research aims to take 

advantage of the strengths of different methodological approaches in combination in 

order to approach explorations of children’s scientific understanding from multiple 

levels that include children’s approaches to working scientifically as well as their 

verbal and non-verbal responses to questions designed to probe existing knowledge 

and activities that are designed to challenge their ideas.  Reported here is a 

developing methodology that maintains the researcher’s reflexivity to explore arising 

features of children’s understanding.  

 

4.3 Research Design 

 
Design is the blueprint of all research (Kerlinger, 1969) and is a fundamental 

ingredient of any research project which can significantly influence the reliability and 

validity attributed to it (Gilbert, 2001).  This work is designed in three distinct phases 

(Figure 13).  This diagram acts as a road map to the proceeding sections within both 

this and the subsequent methodology chapter. The first phase of research consisted 

of reviewing the relevant literature (Chapters 2 and 3), exploring methods and 

methodology (Chapters 4 and 5) and used open observations of science lessons in a 

range of selected schools, both at primary and secondary levels. The purpose of the 

open observations was to gain an understanding of typical teaching approaches 

used. It was anticipated that these observations would help to plan activities that 

were as close to typical teaching sessions as possible, this was in keeping with one 

of the fundamental aims of the research, notably that it endeavoured to represent 

children’s actual learning environments as closely as possible in order to keep the 

work environmentally valid. Once the observations were completed two activities 

were designed (see later section for further details). These activities were then 
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piloted in three schools, again at primary and at secondary levels. The audio-video 

recordings of the pilot study sessions were transcribed and analysed (see Chapter 5 

for a more detailed discussion), this data was then used to further develop the 

planned sessions for research Phase 2 and to inform on the subsequent analysis in 

Phase 3. 

Whilst there was clear guidance from the available literature as to how the interviews 

and observations could be used, the multimodal aspects were novel to this type of 

study and therefore this aspect required extensive piloting. The pilot studies were 

used in order to assess whether or not a study of gesture would provide a fruitful 

research approach and what, if anything, this might add to the field. The preliminary 

results of the pilot phase were subsequently published in “Primary Science” (Callinan 

& Sharp, 2011a) and presented at conferences in 2011 (Callinan & Sharp, 2011b, 

2011c, 2011d).  
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Figure 13: An overview of the three research phases at the heart of the study. 

 

Research Phase 2 comprised probing children’s ideas about electricity and floating 

and sinking using the multimodal, task based approach (see later section for further 

details on this approach and participants in the studies). All children completed two 

activities, one in each domain. The activities were untaken in groups in order to 

facilitate collaborative work between the children (Howe, et al., 1990) and all 

activities were video recorded to permit later analysis. Finally, in Research Phase 3 
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the data from Phase 2 were transcribed. Transcripts, some still images from the 

video recordings and children’s drawing were coded using the NVivo 9 software 

programme in order to permit data tracking. To support exploration of how different 

levels of communication contributed to facilitating understanding of children’s ideas 

an original and innovative storyboarding approach was developed and in order to 

analyse for changes in children’s ideas a timeline analysis for the ideas and 

concepts that children discussed was developed significantly extending the work of 

Givry and Tiberghein (2012). A full review of each of the research phases will follow 

in this chapter and appear in Chapter 5.  

 

 4.3.1 Sampling and Participants 

 

In this section details of the sampling procedure and participants involved in the 

research process across the three phases are discussed. It is common in 

educational research for samples from the population to be studied rather than the 

whole population.  Studying specific samples overcomes the difficulties of cost, time, 

accessibility, and volume associated with population wide studies but characteristics 

of the sample studied can have a fundamental effect on the representativeness of 

the data when the results are generalised (Travers, 1969; Kerlinger, 1969). 

Denscombe (2003, Cohen, et al., 2011; Arthur, et al., 2012;) suggest several points 

that must be addressed when conducting small-scale research projects and these 

include issues related to representativeness and the ability to draw inferences. 

Sampling processes themselves occur across two forms:  

• probability / random sampling – all members of the population have an equal 

opportunity of selection in the final sample; 

• non-probability sampling – where naturally occurring groups or clusters of 

individuals are studied. 

Probability sampling was beyond the scope of the current study therefore a non-

probability clustering sample method was utilised (Denscombe, 2003).  In the work 

undertaken for this thesis the schools were identified as naturally occurring clusters 

of children.  The schools selected to take part in the study were not random but 

based on the interest of the head teachers and teachers to take part in the research 
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project. Such convenience, opportunistic or purposive approaches to recruitment 

(Denscombe, 2003; Arber, 2001) are advantageous as they ensure that all parties 

are committed to the research process and they enable effective relationships to be 

formed between the researcher and the participants.  However, whilst this 

convenience or opportunistic approach facilitates access to participants it limits the 

probability that all population parameters have equal participation opportunities. In 

addition it can be suggested that recruitment based on the interests of the head 

teachers and teachers can introduce bias to the sample and distort the results to the 

study particularly if only high performing schools agree to take part. Debates aside 

however, after careful consideration such recruitment was deemed the most 

appropriate because of the level of access to participants that the researcher 

needed. The subsequent section presents full details of the schools and children 

who participated across the different stages of the research project, however, it is 

noted that data drawn from documents such as Ofsted reports does suggest that the 

schools were not unusual in terms of location, buildings, resources or pupil 

attainment. 

As described in the overview of the project presented in Section 4.3 of this chapter 

the aim of Research Phase 1 was to observe current classroom practice during 

typical school science lessons. It was anticipated that this stage would enable the 

researcher to develop an understanding of suitable teaching strategies for the 

research. The researcher attended a number of science lessons at a range of local 

schools.  This included the following: 

• two infant schools (including City Infant School where two lessons were 

observed and a second infant school where four lessons were observed); 

• one junior school (two lessons observed); 

• one primary school (Village Primary School - four science lessons observed); 

• one secondary school (City Secondary School - a total of ten lessons were 

observed, these included input to Year 7, Year 8, Year 9, Year 10 and a 

BTEC class); 
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• one secondary school science club (City Secondary School – the researcher 

subsequently attended the club once every week for the duration of the 

research contained in this thesis). 

Observations were conducted during the 2009/2010 academic year.  The 

observational element of the study was conducted with the consent of the head 

teacher or the school liaison for university students attending the school and the 

class teachers.  The observations included a wide age range of children, the 

youngest group observed were a nursery class who were studying living things and 

growth, and the oldest group were a BTEC forensic science class conducting an 

assessed practical testing a variety of liquids for the presence of sugar.  All 

observations were conducted using an unstructured approach, e.g. the researcher 

entered into the sessions with the intent of exploring the organisation and 

management that teachers used in the classrooms, the children’s responses to the 

tuition, the way that practical activities were used to support teaching, typical 

classroom layouts, and grouping procedures. In all instances the researcher was 

able to discuss the structure, aims and planning for the lessons with the teachers 

prior to participation.  Wide ranges of science topics were observed including 

biology, chemistry, physics, and forensic science. Specific lessons included a Year 6 

primary school lesson on climate change which explored the impact that such 

changes might have on wildlife (e.g. the polar bear) and included the design of more 

ecologically friendly forms of transport. A sequence of two lessons designed for Year 

2 children with a focus on plant growth was also observed, during these two lessons 

the children learned the names for different parts of plants, discussed the function of 

the different areas and had the opportunity to grow their own plants from seeds. The 

observations were used in the subsequent planning of the science activities used as 

a focus in the pilot studies and Research Phase 2, to familiarise the researcher with 

the organisation, managements and assessment techniques used during teaching 

and learning to work with the different age groups of children, and no further 

discussion of these will be presented here.  

 

In order to complete the pilot studies, three schools were recruited as indicated. All 

three schools were drawn from the sample where the unstructured observations had 

taken place.  
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City Infant School (not the school’s real name) was a small infant school in a mid-

sized city in the East Midlands that was voluntarily controlled by the Church of 

England.  It accommodated a mixed gender of children between the ages of 4 and 7 

years and had an above average proportion of pupils who came from minority ethnic 

backgrounds. At the time of the study the school had 87 pupils in total across the 

three different year groups, Reception, Year 1 and Year 2.  The school had four 

qualified teachers and five teaching assistants. According to the 2009 Ofsted report, 

the school was rated as having an overall effectiveness of 1 and a foundation stage 

effectiveness rating of 2. The attainment figures for 2012 show that 100% of pupils 

attained Level 2 or above in their Key Stage 1 reading assessment; 100% attained 

Level 2 or above in mathematics; and 96% attained Level 2 or above in writing 

assessment. 

 

Village Primary School (not the school’s real name) is located rurally in a small 

village close to a mid-sized city in the East Midlands.  The school is an average-

sized primary school that was controlled by the local authority.  It accommodates a 

mixed gender of children between the ages of 4 and 11 and the majority of pupils are 

of white British heritage.  At the time of the study the school had 210 pupils across 

the year groups, Reception to Year 6.  The school had 12 qualified teachers, 

including the head, and 9 learning support assistants.  The proportion of pupils in the 

school claiming free school meals was lower than the national average. According to 

the 2011 Ofsted report, the school had an overall effectiveness rating of 2 and a 

foundation stage effectiveness rating of 2. The attainment figures for 2012 showed 

that 86% of the children attained Level 2 or above in their Key Stage 1 reading 

assessment; 90% attained Level 2 or above in mathematics; and 86% attained Level 

2 or above in their writing assessment. 

 

City Secondary School (not the school’s real name) was a larger than average 

secondary school located in the suburban area of a mid-sized city in the East 

Midlands.  The school was a specialist language college and had a growing sixth 

form.  It accommodated a mixed gender of children between the ages of 11 to 19. 

Approximately 8% of the pupils were from minority ethnic backgrounds.  At the time 

of the study the school had 1,685 pupils including the sixth form.  The school had a 

large number of teachers and pastoral support staff.  The school had a below 
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average number of children receiving free school meals but drew its pupils from 

some communities with significant social disadvantage. In 2012 the school converted 

to academy status and was pending an Ofsted inspection. The published results for 

2012 showed that 53% of pupils attained 5 GCSEs at grade A* to C (including 

mathematics and English). 66% of pupils attained English GCSE at grade A* to C; 

63% of pupils attained GCSE mathematics at grade A* to C; and 42% of pupils 

attained GCSE science at grade A* to C. 

The following participants were recruited from these schools for the pilot studies: 

• 7 children in Year 2 (3 boys, 4 girls) from City Infant School; 

• 10 children in Year 2 (7 boys, 3 girls) and 10 children in Year 6 (7 boys, 3 

girls) from Village Primary School; 

• 11 children in Year 8 (4 boys, 7 girls) from City Secondary School. 

In order to complete Research Phase 2 participants were recruited from Village 

Primary School discussed above; in addition participants were also recruited from 

the following additional schools: 

 

Village Secondary School (not the school’s real name) was an average size 

secondary school also located rurally in a small village close to a mid-sized city in 

the East Midlands. The school was a small, specialist sports, maths and computing 

college.  At the time of the last Ofsted inspection there were 506 pupils on roll, all 

between the ages of 11 and 16 years. The majority of the children who attended the 

school were White British. Attainment was below average on entry to the school. On 

site was a small specialist unit for students with hearing impairment. At the time of 

the research the school was in a period of transition with a new head teacher coming 

into post. In addition, in 2007 the school joined with six other secondary schools to 

share staff, specialist resources and governors. According to Ofsted 2012 attainment 

data, 60% of the pupils attained five GCSEs including English and mathematics at 

grade A* to C; 82% of the pupils attained English GCSE at grade A* to C level; 67% 

of pupils attained GCSE mathematics at grade A* to C; and 53% of pupils attained 

GCSE science at grade A* to C. 

 

City Independent School (not the school’s real name) was a privately funded 

independent school which was part of the United Church School Trust (UCST). The 
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school had three sites in a mid-sized city in the East Midlands area of England, it 

also had ‘sister schools’ in two other cities. The school employed over 80 teaching 

staff members and a generous number of support assistants, it caters for children 

from 2 to 18 years and according to the school website it accommodated 900 

students across its three sites. The school offered a full time boarding option and 

charged fees, although some children were funded through scholarships and 

bursaries. The inspection process was different in schools of this type and was 

provided by the Independent School Inspectorate. At the time that this work was 

produced only one report was available and this was for the older children who were 

not directly involved here. However, the school GCSE performance figures for 2012 

showed that 90% of children attained 5 GCSEs including mathematics and English 

at grade A* to C. Whilst it could be argued that the children recruited from this school 

were not representative of the local population, it is proposed that the addition of this 

sample alongside the mainstream school participants does in fact enable the study 

to more clearly represent all aspects of the population in the region. 

 

The following numbers of children participated in Research Phase 2: 

• 19 children in Year 2 at Village Primary School; 

• 15 children in Year 2 at City Independent School; 

• 28 children in Year 6 at Village Primary School; 

• 16 children in Year 6 at City Independent School; 

• 15 children in Year 9 at Village Secondary School. 

 

No additional participants were recruited for Research Phase 3 which focused on 

analysing data. 
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 4.3.2 Ethical Considerations 

 

Bulmer (2001) defines ethics as “a matter of principled sensitivity to the rights of 

others” (p.45).  This principled sensitivity must underpin all research projects and 

often impinges on the ways in which research can be conducted. Central 

considerations include issues such as obtaining informed consent, respecting 

privacy, safeguarding confidentiality of data, possibilities of harm to subjects and 

researchers, decisions regarding the use of deceit in order to obtain data and the 

consequences of subsequent publication (Bulmer, 2001). These central 

considerations were attended to when planning the research described in this 

chapter, however, in addition other ethical issues were considered as deserving 

extended consideration in the current study, one such issue included the age of the 

participants (Cohen, et al., 2011; Arthur, et al., 2012).  A number of ethics policies 

including those of Bishop Grosseteste University (2008), the British Psychological 

Society (2010) and British Educational Research Association’s ethical guidelines 

(2011) were used to guide the research process at every stage.  In addition, the 

current legal requirements for adults working with children and vulnerable people 

were adhered to and reference was made to published materials that aim to guide 

researchers in conducting ethically sound research (Bulmer, 2001; Banks, 2007).  In 

the first instance, the researcher attained a Criminal Records Bureau disclosure in 

order to demonstrate suitability for working with children in schools.  As safeguarding 

children is a consideration that all schools must make the researcher completed a 

Safeguarding Children training course to help ensure that appropriate practice was 

observed at all times. Finally, ethical approval for the study was obtained from the 

university and a number of steps were taken in order to protect all parties concerned. 

These steps included: 

• supervised contact with the children in familiar areas of the schools; 

• the provision of appropriate levels of information to all parties; 

• adherence to health and safety policies (including those proposed by 

Association of Science Education); 

• informed consent was gained from all parties including the children; 

• no feedback on children’s performance was given to the schools; 
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• data generated were stored securely on an encrypted external computer hard 

drive that only the researcher held the password for. 

 

One particular issue arising from the planned study was the use of audio-video 

recordings. Extensive consideration was given to how to store and subsequently use 

these materials.  Banks (2007) stated that: 

 

“…all social researchers agree that unless there is a strong justification for 

doing otherwise, the social researcher has a duty to protect the privacy of the 

research subject.” (p.86) 

 

 

This particular aspect of the work was given extensive consideration and in all cases 

participants, participants’ parents and schools were asked for permission to use 

images where a child was identifiable. Attempts were also made to blur the children’s 

faces sufficiently so that identification is not possible on the images that were used.  

 

 4.4 Research Phase 1: Pilot Studies 

 

In order to fully develop the methods to be used in the Research Phase 2 of this 

project a number of pilot studies were undertaken. The pilot studies were particularly 

important because they were used to develop effective techniques for capturing the 

data required, for developing the researcher’s skills in working with the children, and 

for developing opportunities to challenge children’s existing ideas in order to elicit 

change. In order to develop an effective approach to undertaking the pilot studies it 

was considered important to review the typical approaches that had been used to 

study children’s ideas in science particularly as this project aimed to build on the 

extensive previous background work (for example Bell, 2005; The Primary SPACE 

Project Reports, 1990-1998; Osborne & Freyberg, 1985; CLIS, 1984; LISP, 1979-

1996).  Many methods of data collection had been used to explore children’s ideas 

and concepts in science including, but not limited to, interviews (Vosniadou & 

Brewer, 1987), children’s drawings (Sharp & Kuerbis, 2006), and observation 

(Tasker, 1981).  Whilst each of these approaches clearly has its strengths it is 
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proposed that each of these methods in isolation is insufficient for capturing the 

depth required in order to conduct the multimodal analysis that this work aims to 

achieve. In this section these important research methods are briefly reviewed and 

discussed in relation to how these have shaped the design used throughout the 

research undertaken here.    

 

4.4.1 Research Methods – Interviews 

 

Interviews are considered to be the oldest and most frequently occurring method for 

obtaining information (Kerlinger, 1969) and these are functionally defined as   

conversations with a purpose (Cannell & Kahn, 1968); that is to collect information 

regarding the views, opinions, perceptions, attitudes, preferences and behaviours of 

interview participants (Cohen, et al., 2011).  Cannell and Kahn (1968) further 

describe the interview as:  

 

“… two person conversations, initiated by the interviewer for the specific 

purpose of obtaining research-relevant information, and focused by him (sic) 

on content specified by research objectives of systematic description, 

prediction, or explanation”. (p. 527).   

 

Kerlinger (1969) stated that interviews offer a direct route to data collection, a 

characteristic that can be perceived as both a strength and a weakness of the 

approach.  Interviews can take many forms (Cohen, et al., 2011; Arthur, et al., 2012). 

They can focus on an individual or take place in groups, they can be highly 

structured containing closed questions or unstructured where the interviewee has 

control of the final direction that open-ended questions take.  Despite the diversity 

offered by this method, the most frequently used form of interview in science 

education is one-to-one and in a semi-structured format.  The advantage of this is 

that the interview is perceived as being shared between both the interviewee and the 

interviewer.  The semi-structured format also permits the interviewer to use a mixture 

of questions and retain the freedom to follow-up on specific points that may arise 

during data collection.  In addition to questions, the research interview can also 
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include practical and intellectual tasks as demonstrated by the SPACE project (1990 

- 1998) and LISP research projects (Bell, 2005).  

 

A research interview has a number of processes and conditions attached to it that 

are crucial if the method is to be successful at illuminating the information relevant to 

the research questions.  According to Cannell and Kahn (1968) the processes of 

research interviewing can be defined as follows: 

 

• creating or selecting an interview schedule; 

• conducting the interview; 

• recording the responses; 

• creating a coding system (defined by Cannell and Kahn as a numerical code, 

however, in qualitative research terms it is more effective to use themes in 

order to code content); 

• coding the interview responses; 

• analysing data.  

 

 

Importantly, it may also be advantageous to add a further process, that of accurate 

interpretation. Interpretation of linguistic data has a fundamental impact on the 

results of interviews particularly as verbal responses to interview questions have 

tended to dominate approaches to understanding children’s scientific knowledge 

(Lythcott & Duschl, 1990). In one critical paper, Johnson and Gott (1996) warn that 

although interpretation of interview data may appear to be straightforward there can 

be difficulties especially when the interview participants are children. Fundamentally, 

it is proposed that the words that children use may be interpreted in an entirely 

different context when investigated from an adult perspective. This was suggested to 

occur because adults and children do not exhibit the same interpretations of 

linguistic data (a later discussion in Section 4.7 returns to these issues).   
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4.4.2 Research Methods - Interviews in Science Education 

 

Lythcott and Duschl (1990) support the view that evidence regarding children’s ideas 

is ‘overwhelmingly’ drawn from analyses of verbal data collected during research 

interviews.  In science education, research interviews are established research tools 

with their roots in Piaget’s work (1929) which used ‘clinical interviews’ with children in 

order to probe their conceptual ideas across a wide range of topics.  In later work, 

Piaget (1960) further developed this methodological approach to include tasks with 

objects and this became known as the ‘method of clinical exploration’ (Ginsberg & 

Opper, 1988).  Although the validity of Piaget’s approach to understanding 

intellectual development through knowledge growth can be critiqued, it is largely 

recognised that his methodological approach is particularly helpful in uncovering 

children’s reasoning in relation to science (Osborne, et al., 1991).  Interviews 

therefore provide a method for eliciting the understanding that children have of 

specific scientific concepts.  White and Gunstone (1992) have proposed that there 

are two distinct forms of research interview that can be used to investigate children’s 

understanding in science: 

 

• interviews about instances and events – this form of interview is a deep probe 

into a student’s understanding of a single concept, the aim is to investigate 

whether the concept is applied appropriately as well as to investigate if the 

student can explain their decision.  Typically, this type of interview will use 

drawings, activities, or prompts that bring certain situations containing the 

concept of interest to light. Students are then asked to discuss; 

• interviews about concepts – this form of interview is more frequently used in 

order to gain an understanding of all the ideas and facts that a student 

associates with a specific concept.  The purpose is to elicit as much 

knowledge as possible. 

 

From the research literature, the most frequently occurring form of interview in 

science education appears to be those with a focus on instances and events (for 

examples see the work of diSessa, 1988, and Driver, 1978, 1983, 1986) as these 

permit researchers, particularly those investigating conceptual change, the 
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opportunity to explore the conditions under which students’ apply their knowledge.  

In order to guide researchers Osborne and Freyberg (1985) used their experience of 

working with children in order to propose a number of procedural recommendations. 

These included making sure that interpretations of this form of data reflect the child’s 

meanings rather than the adults and maintaining the opportunity to explore the 

reasoning behind the responses that are received.  The strengths and weakness of 

the interview approach as drawn from the work of Mathison (1988) and Lythcott and 

Duschl (1990) are summarised in Table 4. 

 

 

 
Strengths and Limitations of Research Interviews with Children 
 
Strengths Limitations 

Flexibility - it is possible to incorporate 
many different activities at the same 
time, including but not limited to 
drawing, selection activities, and 
identification tasks. 
 
Direct method of collecting data.  
Richness of the data obtained. 
 
Depth of detail that researchers can 
uncover.  
 
Possible to interview more than one 
child at the same time, group 
consensus can have advantages for 
research aims. 

 

Mastering the technique of questioning 
children is complicated.  
 
Inducing child conversations is a 
difficult task, adult interviewers are 
perceived as authority figures and this 
can prevent children from entering into 
conversation as they normally would. 
 
Children’s responses can be 
misrepresented. 
 
The researcher needs to remain 
tentative in their hypotheses of what the 
child knows in order to adapt to the flow 
in the child’s conversation. 
 
Where more than one interview 
participant is present responses can be 
influenced by the social context. 

Table 4: Strengths and limitations of using research interviews with children 

(Mathison, 1988; Lythcott and Duschl, 1990). 

 

As suggested by the limitations listed in Table 4 it is fundamentally important for 

research involving children as participants to adopt appropriate procedures for 

asking children questions.  In order to ensure that appropriate approaches to asking 

questions were utilised during the current study, reference was made to a number of 
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educational sources (Harlen, 1995; Ollerenshaw & Ritchie, 1993).  In order to 

prevent children feeling pressured to give an accurate response to questions, 

Elstgeest (1995) recommends the use of ‘why do you think’ and ‘what do you think’ 

questions.  It is proposed that by structuring questions in this way, the onus for 

providing factual responses is reduced from children. In addition, when researchers 

also specify that it is okay for children to say that they ‘don’t know’, pressure for 

responses, whether accurate or not, is removed from those who may not be able to 

introspect on the sources of their own knowledge.  Elstgeest (1995) also suggests 

that when questions are complex, children can be assisted in dealing with these if 

the questions are broken down in manageable steps.  This advice was adopted 

during the current study with most questions being framed in a ‘why do you think’ or 

a ‘what do you think’ manner.  

 

Despite the limitations of the interview method and with the provision that the 

researcher remain mindful of the possible ways in which data obtained in this way 

can be subject to ‘contamination’ it was anticipated that the current research would 

utilise an interview about instances and events approach in order to investigate 

children’s conceptual knowledge whilst they complete scientific tasks and was built 

into methodology and piloted.  However, in order to maintain a high level of 

ecological validity, or validity that most accurately represents the school learning 

environment, this research moves away from the traditional individual interview and 

investigated understanding as assessed in a group context.  There are key 

advantages to using group context. The following extract from the pilot study 

conducted here demonstrates one way in which children can support each other 

when answering questions if one participant is uncertain about what to say (RS = 

researcher).  
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Time Person Verbal Report 
 RS Ok, so I would like you to have a think 

for me about things that float and things 
that sink, ok (pauses) right, ok, so what 
do you think floating is? 

0:34 Tom Something that doesn’t go under water 
 RS Ok 
 Julie It rises above the surface 
 Steven Erm, yeah 

0:45 RS When you say it rises above the 
surface what do you mean? 

 Steven I know… 
 Julie Erm… 
 Steven It stays on the top 
 Steven And erm…its stay on top of the water 

Table 5: Excerpt from Year 8 pilot study investigating the scientific understanding 

that children associate with items that float and sink. 

 
This excerpt from a larger transcript demonstrates how the pressure on the 

participant to answer the researcher’s question is deferred and relieved by the social 

support present within the group context (Table 5).  This approach to the interview 

process also supports the children by recreating the familiar context usually 

encountered in the science classroom.  Group interviews, sometimes called focus 

groups, are frequently used in research; however, they are perhaps less frequently 

used in science education research.  
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4.4.3 Research Methods - Group Interviews / Focus Groups 

 

Group interviews are broadly similar in many respects to individual research 

interviews with the exception that they have more than one participant present at the 

same time, and interaction between participants is one of the key points of interest 

(Kitzinger, 1994, 1995; Morgan, 1996).  Group interviews are sometimes considered 

synonymous with focus groups typically. The distinction between the two is based on 

whether the group existed prior to the research taking place, the level of interaction 

permitted during the process, and whether or not a researcher is present to guide the 

purpose of resulting discussions. Morgan (1996) suggests that a clear distinction 

between group interviews and focus groups is often difficult to define, especially as 

both methods can take place in similar settings with similar types of group formation 

and similar research aims. For the purposes of the current research project, it was 

considered that although the groups typically did exist prior to the research being 

undertaken, the interactive nature of the data collection and the researcher’s aim to 

focus discussions on specific areas of interest would fulfil the criteria of focus group. 

Thus there are parallels between focus groups as discussed in the literature and the 

groups of children used for the purposes of the research in this thesis. 

 

Focus groups are a technique for investigating the communication within groups of 

individuals as well as a means for understanding their individual knowledge and 

experiences (Kitzinger, 1995, 1994).  The development of the method is accredited 

to Merton (1956) who employed the technique to investigate people’s reactions to 

propaganda during times of armed conflict.  In a standard interview, interaction is 

rarely, if ever, noted, the focus group by contrast investigates interaction between 

individuals and uses this data in order to understand the ways in which the social 

environment influences individual responses and constructions of knowledge.  

Traditionally, focus groups have been used in a wide variety of contexts including 

marketing and social research (see Morgan 1996 for an overview).  Focus groups 

are a popular method for gathering group data and depending on the way in which 

these are facilitated, the approach offers a unique insight into the way in which 

meanings are constructed and understood within a group.  Often focus groups will be 

combined with other approaches such as surveys and individual interviews, with 
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focus groups being used to validate data drawn from other sources.  It is typical 

practice during such research sessions to complement research questions with 

activities that the group will undertake.  Kitzinger (1994) suggested that activities 

undertaken in focus groups can generate “invaluable data” (p.107) and provide a 

means that permits comparative analysis between groups.  In addition, Kitzinger 

(1994) stated that: 

 

“Group work ensures that priority is given to the respondents’ hierarchy of 

importance, their language and concepts, their frameworks for understanding 

the world.”  (p.108) 

 

As with all methods, focus groups have a number of strengths and weaknesses.  

The most frequently stated advantage is its ability to reveal insight into the way in 

which social interaction influences individual participant’s knowledge; it is a possible 

means of tapping into meaning construction as it would normally occur.  Focus 

groups are able to reveal sources of diversity in understanding as well as to 

elucidate areas of consensus (Morgan, 1996).  The group context permits a greater 

variety of communication than can be drawn from other research methods (Kitzinger, 

1994).  The group context relieves the ‘burden’ of explanation participants can feel in 

an individual interview context (Morgan, 1996).  In addition, participants in focus 

groups often facilitate direct comparisons within the group’s membership through 

their own questioning of each other’s responses.  However, weaknesses of the 

method include the possibility that the group context may cause participants to 

censor their responses in order to maintain social cohesion within the group.  The 

facilitator may unintentionally interrupt and divert the group discussions thus 

suppressing valuable insights. Group membership can also have a fundamental 

impact on outcomes (Morgan, 1996) especially when the participants know each 

other well.  Kitzinger (1995) also warns that this method compromises the participant 

confidentiality that individual interviews support and this may subsequently influence 

the types of discussion that occur.  Discourse analysis studies comparing 

participants’ responses in interviews and focus groups present substantial results 

that support this criticism of the method (Agar & Donaldson, 1995; Saferstein, 1995) 

and in addition they also reveal disparity between the responses of participants in a 

group context compared to responses in an individual setting.  This suggests that 
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researchers need to remain mindful that responses collected during a focus group 

may not reveal a true representation of an individual’s beliefs, knowledge or 

understanding.  

 

Weaknesses aside for the moment, and, for the purposes of this research project, 

this approach was considered to provide an appropriate method for addressing the 

research questions as it would enable the participants to talk about scientific 

concepts within their own framework of understanding.  The group context also 

reflects the environment typically occurring within a science classroom when 

practical activities are undertaken and this may in part help to resolve the difficulty 

associated with achieving a comparison that it close to actual environment in which 

children learn.  

 

The following excerpt from the pilot study demonstrates how children interacted 

during discussions in science lessons, illustrating how they help each other by 

completing intended utterances where peers struggle to finish (Table 6). They also 

express contrasting views. The children participating in this activity were all in Year 6 

of primary school. The group consisted of two girls and three boys, and all of the 

children were from the same class and were familiar with working with each other 

(RS = researcher). 

 

Time Person Verbal Report 
07:22 RS Ok, so can you tell me what is happening in that to 

make the bulb light? 
07:31 Rachel Erm, the batteries are making the power go all the 

way, no, the electricity go all the way to make the bulb 
which is making it… (hesitates at this point) 

07:41 Sally Light up 
 Rachel Yeah 
07:44 RS Ok, do you agree with that? 
 Sam Is it cuz, like, on there, there’s two pieces of metal like 

and on there and then if you like clip them on 
they’ll…thing…like something will go through there 
and it connects like on the metal to there which the 
battery power will go through there 

Table 6: Excerpt from a pilot study of the electricity activity conducted with Year 6 

children from the Village Primary School. 
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In research investigating children’s ideas focus groups are rarely, if ever, reported 

although a number of projects do specifically investigate children’s knowledge 

elicited in a group context.  One example of this type of research was presented by 

Bloom (2001).  Bloom’s study investigated children’s understanding of density and 

the way in which these understandings change following a task based discussion 

regarding an unexpected occurrence (e.g. a piece of ebony sinks when the children 

expect it to float).  Although Bloom’s work was embedded in a teaching context, his 

method of inducing interaction through questioning is representative of focus group 

techniques.  The subsequent analysis of group interaction and the resulting learning 

by the children taking part revealed the underlying experiences and understanding of 

the group with regard to the subject matter.  It was determined from the pilot that the 

group based task approach would be a specifically useful approach for the Research 

Phase 2 and assist in revealing children’s conceptions of scientific knowledge.  

However, although focus groups were considered valuable, there was also a 

requirement for the researcher to be reflexive and open to events that occur during 

participation in the science activities.  One other aim of the research project 

developed here was to investigate the role that non-verbal behaviour had when 

children were expressing and developing their scientific knowledge and a pure focus 

group approach does not provide that level of detail for analysis.  In order to enable 

this additional layer of depth it was important to consider the strengths and 

weaknesses of observation. 
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4.4.4 Research Methods - Observation and Participant 

Observation 

 

Observational research methods originated from ethnographic studies (Denzin & 

Lincoln, 2003; Friedrichs & Ludtke, 1975).  Scheuch (1958) described observational 

studies as follows: 

 

“…the recording of facts, perceptible to the senses and on the basis of a set 

plan in which the researcher maintains a receptive position in confrontation 

with the research object. This receptive position distinguishes observation 

from the interview and the experiment, in that one dispenses with evoking the 

desired reactions by verbal as well as other stimuli.” (p.5) 

 

Observational methods can be an effective research tool particularly if the aim of the 

research is to capture the dynamics and complexities of activities or events (Wragg, 

1999).  As with research interviews, observational studies can be conducted on 

many levels ranging from the researcher playing the role of a participant in the 

situation to remaining complete divorced from it through non-participation.  In 

addition, observation studies can take many forms: 

 

• structured – a clear agenda is set for what the observation will record; 

• unstructured – the observer will have no agenda;  

• semi-structured – the observer will have some items set out for recording but 

will remain reflexive to the situation in order to accommodate unexpected 

incidents that occur. 

 

Each of these forms of observation has their own strengths and weaknesses (Table 

7). For example; unstructured observation may result in the researcher being 

insufficiently focused and prevent the collection of important data (for more details on 

strengths and weaknesses see Table 7).  Structured observation may be too 

inflexible to permit the observer the opportunity to record important information that 

may influence the behaviour that is being studied thus resulting in a distortion of 

interpretation.  However, despite these limitations, observational studies are 
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particularly useful if the aim of the research is to collect information about what 

people actually do, it can also be an effective method for studying people’s actions 

and interactions.   

 

If the observation is well planned, it can offer information about the complexities of 

behaviour that may not be facilitated through an interview or experimental situation.  

Friedrichs and Ludtke (1975) described the following as four advantages of the 

observation method: 

 

• it avoids the discrepancy between real and verbal behaviour; 

• it allows observation in situations when questions only meet with 

misunderstanding or try to evoke attitudes which are first created in the 

interview situation; often such facts are brought to light by means of natural 

setting only; 

• it allows the identification of processes which could otherwise only be brought 

out by an inconvenient change of repeated interviews or content analyses; 

• the observation of behaviour does not depend on the verbal capabilities of the 

interviewed person. Just such class-related capabilities reduce the range of 

interviews, group discussions, and possibly the content analysis. 

 

 

 
Strengths and Limitations of Observation Methods 

 
Strengths Limitations 

Captures the dynamics and 
complexities of activities / events. 
 
Permits the researcher the opportunity 
to explore arising features of 
interaction. 
 
Can be used for clarification / 
triangulation. 
 
Can be more open than other 
approach to research enquiry. 
 
Participant observation techniques 

Can be either too flexible and lack guidance 
or too inflexible depending on the design. 
 
Can result in the over-simplification / 
trivialisation of complex and dynamic 
situations. 
 
Can be intimate or personal which requires 
ethical consideration. 
 
Can be value-laden. 
 
The researcher can unintentionally 
influence the outcome, participants may not 
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permit the researcher the opportunity 
to fully engage with the participants. 
 
Avoids the discrepancy between real 
and verbal behaviour. 
 
Overcomes misunderstandings that 
can occur by using questioning 
techniques alone. 
 
Does not rely on the verbal 
competencies of the research 
participant. 

behave or answer in the same way as they 
would if not being observed. 
 
Observer bias can occur in both data 
collection and interpretation. 
 
Can present a distorted picture of the 
interaction depending on the approach to 
observation. 

Table 7: The strengths and limitations of observational methods (Denzin & Lincoln, 

2003; Friedrichs & Ludtke, 1975). 

 

Taylor (2006) demonstrated support for these advantages in her research 

investigating how boys use actions in order to complete and complement their 

discussions of sport.  Taylor observed and video-recorded a conversation between a 

group of five boys discussing a football match.  This observational study was able to 

reveal significant evidence supporting the notion that gestures and actions 

performed with the body compliment and complete communication verbalised 

through speech.  This evidence may not have been so forthcoming if the researcher 

has intervened or questioned the boys using an interview technique.  

 

There are number of techniques that are associated with successful observational 

studies: 

 

• note taking – accurately recording the events that occur; 

• frequency counting / tally charts – recording how many time a specific 

behaviour or interaction occurs; 

• interval sampling – recording the events that occur within specific time 

intervals; 

• duration sampling – recording the length of time that actions or interaction are 

performed over; 

• activity or event rating – rating events on a scale in order to assess the effect 

of those actions; 
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• photography – capturing images that can be used in later analyses of events 

as they happen; 

• audio-visual recording – this approach permits the researcher the ability to 

code the data off-line, thus events can be replayed and inter-rater reliability 

can be established. 

 

Each of these techniques has their own strengths and limitations but if carefully 

organised they can be used effectively in a research capacity.  The key weaknesses 

of the observational method approach include observer bias occurring in both the 

collection of data and the interpretation of the data and the unintended influence that 

the researcher can have on the behaviour of the participants even when they do not 

take an active role in their presence can influence how the research participants 

behave. Furthermore there can be issues related to the time that is needed to record 

the data, issues related to participants, issues related to researcher participation and 

the possible biases and distortion that this can introduce. 

 

Observation has also had a significant role to play within science education 

research. One study by Tasker (1981), for example, used the approach to uncover 

the ways in which teachers’ and children’s interpretations of intentions during 

science lessons varied.  In another study observational techniques were utilised in a 

Grade 10 class of German children in order to explore the conceptual change 

occurring as an understanding of chaos theory was developed (Duit, et al., 1998).  

The main analysis for this study was drawn from an opportunistically video-recorded 

discussion between five girls as they debated the behaviour of a pendulum.  In order 

to capture the data each of the researchers observed individual groups working 

through the science activities.  A video camera was placed in the middle of the room 

which was used to record the interaction once a particularly interesting conversation 

was observed to be occurring.  The results of this study were interpreted to suggest 

that unwarranted conceptions could occur following practical activities even when the 

curriculum is well structured.  However, the opportunistic results of this observational 

study revealed the strength of using this approach when investigating conceptual 

change.  
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In order to address the research questions presented here participant observation 

was employed and in order to permit the subsequent analysis all activities with the 

children were audio-video recorded using two cameras set at different locations in 

the room so that the greatest coverage of the children’s activities was possible. The 

audio-video recording was an essential component particularly for the multimodal 

approach and analysis adopted in this thesis. Previous research had highlighted that 

conversations are just one means through which children communicate their ideas 

(Kress, et al., 2001) in order to gain a more holistic understanding of children’s ideas 

and concepts it was considered advantageous to acknowledge a range of response 

types through a multimodal approach (a full review of the multimodal approach will 

follow in chapter 5).  Here, therefore, the children will be observed for instances 

when they appear to be stuck for words or when they appear to be relying on other 

response types in order to complete their communication of ideas. In application to 

the current research, observation plays a fundamental role in the data collection, 

particularly as the research aims to elicit students’ understanding of scientific 

concepts during their completion of science activities.   

 

 4.5  The Multiple-method Approach Used in the Pilot Studies 

 

The approaches to data collection reviewed so far and used in the pilot studies 

highlighted that a multiple-method approach would be the most sensitive for 

addressing the research aims. In addition to the focus group and participant 

observation approaches the literature also revealed that children’s drawings were 

frequently collected in science education research and that these often added to the 

researchers’ understanding of the ideas that children held (for example Vosniadou 

and Brewer, 1987, used children’s drawings to assess their ideas about astronomy 

concepts). In early work Symington et al (1981) discussed the importance of 

studying children’s drawings of natural phenomena and important science projects 

such as SPACE (1990 – 1998) drawings were used in order to triangulate an 

understanding of children’s ideas. It is perhaps no surprise then that when using the 

multimodal perspective drawings are also attributed with a role for revealing aspects 

of knowledge that may not be afforded to speech or written work (Kress, et al., 2001; 

Jewitt, et al., 2001; Kress, 2010; Jewitt, 2011).  Therefore the opportunities for 
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children to complete drawings were also provided. It was clear from an evaluation of 

the evidence obtained that a single approach would not enable the researcher to tap 

into the children’s ideas with an appropriate level of sensitivity if used in isolation. 

The pilot studies were designed to include elements of all of the techniques 

discussed above, a semi-structured focus group schedule was developed, this was 

applied using a dialogic teaching technique (Alexander, 2004; Fisher, 2007; Lyle, 

2008; Mercer, et al., 2009; Heneda & Wells, 2010). The dialogic teaching technique 

had been supported by previous science education researchers because of the 

approaches ability to not only probe children’s ideas effectively using questioning but 

had been shown to support children’s learning because of its discursive nature in 

which children are able to work out their own ideas through talk in the classroom 

context. The elicitation of ideas took place in a group learning context provided 

through practical science activities, an approach that was typical of learning in all 

age groups in the schools observed during the unstructured observations from 

Research Phase 1. Practical work in science had also been highlighted to be 

important by many researchers and research projects (Woolnough, 1991; Kirschner, 

1992; Duggan & Gott, 1995; Gott & Duggan, 1996; Wellington, 1998; Leach & 

Paulsen, 1999; Wickman & Ostman, 2002; Braund & Driver, 2005; Hogarth, 2005; 

Abrahams & Miller, 2008; Gatt, 2009; Millar, 2010; Abrahams, 2011). Notably, 

although the effectiveness of practical work can be debated, particularly with 

reference to the quality of practical experiences, there was strong evidence that 

direct experience of important concepts and ideas can support children’s 

development of ideas. The researcher used participant observation in order to retain 

the flexibility to probe children’s ideas during the activities and in order to identify 

when children had reached the limits of their understanding in order to prevent 

distress.  The use of these probes was reflexive on the part of the researcher as the 

researcher aimed to ask the questions at moments during the activities when the 

children were likely to be receptive and able to answer the questions presented.  

Therefore, although there was a schedule for the activities and target questions that 

were asked of all groups, the timing of the questions as well as their content was 

flexible to suit each group of participants as required.  The cue for adaptation was 

drawn from the researcher observation of the children’s progress and abilities as 

they worked their way through the tasks. This combined application of different 

methodological techniques was best described by the multiple-methods approach. 
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However, one important criticism of all elicitation techniques was presented by 

Johnson and Gott (1996) who explored issues related to the interpretation of 

children’s ideas as drawn from all such research findings. 

 

4.6 Application in Context 

 

The pilot studies took place in the three schools identified in the participants’ section 

of this chapter and were held during the final term at the end of the academic year 

2009 / 2010.  The children undertook work in two areas of science as indicated: 

 

• electricity; 

• floating and sinking. 

 

These activities were specifically chosen because they provided for different 

approaches to learning, the electricity activities were practical but abstract in nature 

and required a greater degree of conceptual knowledge and understanding than the 

floating and sinking activities, the outcomes of which are perhaps more tactile and 

observable. It was anticipated that the contrast between the two areas; one 

theoretical, one inherently visual, would facilitate a greater understanding of 

knowledge growth. In addition, both of these areas of science were part of the 

National Curriculum (electricity appears in ‘physical processes’ and floating and 

sinking appears in ‘materials and their properties’ but can overlap with the ‘physical 

processes’ input at secondary level). These two areas are familiar and easy to 

undertake in practice and it was anticipated that all of the children may have had 

some prior contact with these areas. In addition, the previous research (detailed in 

Chapter 3) has revealed that both areas were rich sources of alternative frameworks 

of understanding.  

 

The two activities were designed to last approximately one hour each, although in 

general the electricity tasks were shorter than the floating and sinking tasks.  Both 

were audio-video recorded to enable subsequent transcription and analysis. In 

addition to ‘global’ ethical consent, consent for the recording was obtained verbally 

from all of the children prior to participation.  
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Using the information gained from the unstructured observations it was clear that 

science tuition in all schools usually took place either at whole class or small group 

levels. This occurred regardless of the age of the children. The small group 

approach, which is often termed collaborative learning groups (Tunnard & Sharp, 

2009) has been shown to be particularly effective for supporting children’s learning in 

science (Driver, et al., 2000; Rivard & Straw, 2000). In light of this key finding the 

pilot studies were also structured to take place in small groups, the number of 

children in each group varied from 3 to 5. The researcher and the class teachers 

were responsible for grouping the children and in all cases attempts were made to 

ensure that the children working together were comfortable in each other’s company. 

 

In all instances participants were briefed as to the purpose of the activities, the use 

of the audio-video recordings, encouraged to work as a group as they normally 

would during a science practical, and informed that if they were unable to answer 

any of the questions or perform tasks it was perfectly okay to say ‘I don’t know’ or ‘I 

can’t’. The studies were helpful for identifying practical issues such as the placement 

of cameras and the appropriateness of the materials used in the science activities for 

all of the age groups of children as well as offering an opportunity to develop 

questioning skills that could be used with all of the age groups. In the second 

instance the preliminary data driven approach to analysis permitted the early 

development of the analytical frameworks that would be used in the final study. Prior 

to undertaking the pilot studies two pre-screen instruments and two practical science 

activities were developed and planned. 

 

The two pre-screen instruments were used to establish a baseline for the children’s 

ideas at the beginning of the activities (see appendices a and b), one for electricity, 

and one for floating and sinking.  These instruments were compiled using a range of 

teaching materials and by adapting a methodological approach used in the Primary 

SPACE projects that asked children to complete drawings and pre-formed 

sentences.  The electricity pre-screen was developed by paying particular attention 

to the Primary SPACE Report on Electricity (Osborne, et al., 1991), in this project the 

researchers had asked children to complete a drawing of a bulb and battery in order 

to make the bulb light.  In the current study, this approach was used but for the older 
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children the drawing contained the scientific symbols for battery and bulb rather than 

a picture of a battery and a bulb.  In order to ensure that children were familiar with 

the symbols the researcher pre-screened children using a list of symbols, all groups 

that were able to identify these were given the pre-screen sheet containing symbols.  

This ensured that if children were not certain of the symbols they were given a sheet 

that would facilitate their understanding of the task.  In addition to the drawing 

completion, children were asked to complete a pre-formed sentence “The bulb lights 

because…” with their own response.  As this task demand was more difficult for the 

Year two children, the researcher collected their individual verbal responses to the 

pre-formed question on the video recordings and inserted these into each child’s 

sheet.  

 

In the pre-screen to the floating and sinking activity children were asked to complete 

a drawing to show what they thought floating and sinking was by drawing in at least 

two objects one floating and one sinking. The design of the worksheet was guided by 

Bryant (1981).  Children were then asked to complete two pre-formed sentences with 

their own ideas of why things float and sink, the sentences were structured similarly 

to those for the electricity activity. For example, “Things float because…”  

 

Table 8 and Table 9 provide an overview of the design of each of the practical 

sessions. Each stage of investigation is mapped to the specific science concepts 

under investigation.  The aims attached to these activities were as follows (see 

Tables 8 and 9 for further details): 

 

• to elicit children’s ideas and concepts in relations to electricity, and floating 

and sinking; 

• to explore the way in which children approach the problem solving tasks 

within each practical activity; 

• to explore to what extent it is possible to instigate conceptual change or 

challenge through practical science activities; 

• to provide children with the historical context to the discovery of the scientific 

principles that were being studied by discussing important science stories 

(Millar & Osborne, 1998) 
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• to explore to what extent a variety of responses to the tasks, verbal and non-

verbal, reveal the nature of children’s ideas and concepts in relation to 

electricity, and floating and sinking. 

 

The physical spaces in which the research was undertaken was structured in order 

to promote collaboration between the children and the children were prompted to 

work with each other as well as with the researcher.   
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Electricity 
Activity / Aim Science Explanation 

Baseline probe of 
understanding of electricity 

Electricity is a term that describes a variety of phenomena resulting from the presence or 
flow of electric charge. 
Electric charge is a property of subatomic particles, which gives rise to and interacts with 
the electromagnetic force.  Charge originates in the atom, in which the most familiar 
carriers are the electron and proton. 
Electricity is used for a variety of purposes but children may be more familiar with the use 
and effect of electricity in the home with electrical appliances such as televisions, 
cookers, kettles, gaming devices. 

Identification of symbols used 
for electrical components 

A child who is able to identify the symbols will show that they have understood that these 
can be represented using shorthand methods. 

Complete worksheet 
containing a diagram of a 
bulb and battery 

Children who understand that electricity needs a path (a circuit) should complete the 
drawing to show wires connected to either side of the bulb (making contact with the metal 
base) and drawn back to connect with the battery. 

Constructing circuits  
Probe of understanding of the 
simple circuit 

The bulb lights because the circuit provides a path through which the negatively charged 
electrons can ‘flow’. 
The battery produces the charge (can be conceived of as ‘force’ or ‘push’ too) through a 
chemical reaction that occurs between the components within (the exact nature of this 
depends on the battery). 

Adding switches When the switch is off the circuit is incomplete and there is no path for the electric charge 
to flow through. 
When the switch is on it completes the circuit and the electric charge can flow freely 
around the circuit. 

Make a series circuit In a series circuit adding additional bulb increases the resistance in the circuit, this 
prevents the electricity from flowing as freely in the circuit and the bulbs appear dimmer 
equally so if the bulbs are identical.  Provided the bulbs are matched they should both 
shine with the same intensity.  Adding more batteries increases the electric charge (can 
be conceived of as ‘force’ or ‘push’ too) in the circuit this enable more energy to reach the 
bulbs and increases the intensity of the bulbs, they glow brighter. 
The removal of a bulb in a series circuit creates a gap in the circuit and the electric charge 
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is not able to flow. 
Make a parallel circuit 
 

The removal of a bulb in a parallel circuit only affects the branch on which the bulb sits, 
the bulbs in other branches on the circuit remain lit. 

Measuring electricity 
 

Electricity can be measured in amperes and volts. 
Amperes measure the electric current in the circuit, the current consists of the any moving 
charged particles.  The measurement of current remains the same wherever it is 
measured in the circuit.  The potential energy in a circuit is measured in volts (this should 
be the same as the batteries) and requires the measurement to be taken in parallel. 

Problem Solving Activity: 
Testing materials for 
conductivity 

Most metals conduct electricity although some do so better than others.  Items conduct or 
insulate depending on their underlying molecular structure, this requires an understanding 
of materials. 

Challenge ideas of how 
circuits work through a 
practical demonstration of the 
behaviour of the subatomic 
particles in electric charge 
using an analogy 

Negatively charged electrons move around the circuit carrying energy to the bulb, the 
electron move from negative to positive poles of the battery. 

Discussion of the story of 
Alessandro Volta 

Volta was perhaps the first person to harness the power of electricity and this story will be 
used to add context to the children’s understanding. 

Final probe of electricity 
concepts 

If the conceptual challenge aspect of the task was successful the children should respond 
to the final probe by using discussions of electron movement in their responses. 

Table 8: The science activities incorporated in the planning for the electricity tasks mapped against the target science 

explanations investigated. 
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Floating and Sinking Activity 
Activity / Aim Target Science Explanation 

Baseline probe of students 
definitions for floating and 
sinking 

When an object is submerged in any fluid it is considered to be floating if it tends to 
move upwards or if it stays at the surface of the water, if an object moves downwards it 
is considered to be sinking. 

Guess what floats / sinks 
Investigate ordering / 
sequencing skills 
Ability to generate hypotheses 
Ability to set a fair test 

Objects can be categorised according to their properties as to whether they will float or 
sink, dense objects tend to sink whilst objects with a low density float.  Objects float 
when air is enclosed, the air lowers the density. 
 
Archimedes’ principle: A floating object will experience an upthrust force from water, 
equal to the weight of water displaced (pushed aside).  It will sink into the water until it 
reaches the point where the weight of the water pushed aside equals its own weight.  
For an object that is floating, the mass of the material equals the mass of water that is 
displaced by the object (1 kg = 1 l of water).  Dense objects cannot displace enough 
water to provide an upthrust force to counterbalance their weight, so they plummet 
below the surface.  Objects made of material denser than water (e.g. a boat made of 
iron) can still float if they contain air so that the mean density is less than that of water.  
Objects float if the upthrust force from the water can balance their weight (gravity 
force). 
• Objects float depending on their density compared to water; for an object to float its 
density needs to be less than that of water. 
• Objects float when air is enclosed in an object; their density is lowered, thereby 
increasing the likelihood of floating. 
• The upthrust depends on the amount of water displaced. 
• Objects float better in salt water (density of salt water is greater than that of pure 
water). 
• Water surfaces have a cohesive force (surface tension) that makes them act like a 
‘skin’. 
• Small, dense objects (e.g. a pin; a water spider) can ‘float’ on the surface of water 
without breaking it, due to surface tension effects. 

Test which items float and which 
sink 

Probe of student’s 
understanding of why some 
things float and some things 
sink 
 
 
Probe of whether shape affects 
whether things float  
 
 
Test whether plasticine floats or 
sinks 

Problem solving activity: Changing the shape of the plasticine changes the amount of water that it is able to 
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Moulding plasticine to make it 
float  
Add marbles to the plasticine in 
order to see how much weight it 
can hold before it sinks 

displace, if the new shape is able to displace enough water it will float.   
 
The marbles are additional weight but if these are placed in the plasticine so that they 
are balanced the object will still float (this is how boats work). 

Probe of conceptions of why the 
plasticine floats once the shape 
is changed 
Adding weight to the plasticine 
models 
 
Ask children to gently place 
marbles into their models 
Demonstration of water 
displacement through a balloon 
activity 

By encouraging children to push the balloon (which floats) down into the water they are 
able to feel the upthrust force and see the water that is displaced by the object. 

Discussion of the story of 
Archimedes  

In order to help the children understand how the principles of water displacement was 
discovered the story of Archimedes discovery will be used to add context. 

Discussion of density The density of an substance influences whether or not it will float or sink. 
Final probe of floating and 
sinking 

If the conceptual challenge aspect of the task has been successful the children will 
discuss density and forces such as upthrust during the final probe. 

Table 9: The science activities incorporated in the floating and sinking task and the target science explanations that they 

investigate. 
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4.7 Johnson and Gott’s Adult-Child Translation Interface 

 

Having critiqued the different approaches to studying children’s ideas that have been 

evident within the research and having subsequently developed an effective 

approach that aimed to capitalise on the use of a multiple-method which aims to 

reduce weaknesses, there was one final level of criticism that it was important to 

address in this thesis. In an influential paper investigating the validity and reliability of 

evidence investigating children’s ideas in conventional terms Johnson and Gott 

(1996) presented the argument that the research of that time had operated under the 

illusion that the interpretation of children ideas was a straightforward process.  

Critically, Johnson and Gott (1996) proposed that research interpretations operating 

under this ‘illusion’ may be open to misinterpretation of children’s actual abilities and 

that researchers were misguided because they failed to recognise that adults and 

children may hold disparate frames of reference.  The frames of reference that 

individuals hold are influenced by their experience and knowledge, and as such, 

these frames of reference will influence the ways in which communication is 

interpreted and the ways in which subsequent responses are framed.  Whenever an 

interaction takes place, these frames of reference will be active. Therefore, it is 

important to note that at least two frames of reference will operate at any one time.  

Thus, when adults, particularly researchers, are interviewing children in order to 

ascertain their knowledge they need to take account of the different frames of 

reference that will be in operation: theirs and that of the child.  It was suggested that 

any interaction between an adult and child will cross the boundaries of these frames 

of reference on more than one occasion.  Figure 14 demonstrates the crossing 

points between the frames of reference that occur during a one question event, 

during this short interaction on two occasions information passes through a 

translation interface.  According to Johnson and Gott this adult-child translation 

interface is the point at which the understandings of the two frames of reference 

converge. It is also the point at which intended meaning can be lost or 

misinterpreted.  As Figure 14 indicates the frames of reference may influence the 

ways in which questions are interpreted, subsequent responses are generated, and 

the final interpretation of meaning that is ascribed to the response. 
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Figure 14: The adult-child translation interface adapted from Johnson & Gott (1996). 

 

In their research Johnson and Gott (1996) suggested that translation differences can 

easily arise if children do not interpret questions according the frame of the adult or if 

the adult interprets a child’s response using an underlying meaning that significantly 

differs from that intended by the child.  One such example of misinterpretation 

occuring in the adult-child translation interface was presented in a study by Leddon, 

et al. (2008).  Leddon, et al. (2008) suggested that the meanings of words is often 

taken for granted and the complacent view that alignment between words and the 

underlying concepts are one and the same may lead to a misunderstanding of 

children’s abilities.  In their two reported studies investigating the appreciation of the 

concept linking living things in American children across three age groups, 5, 6, and 

9 years, it was revealled that by changing the language used from ‘alive’ to ‘living 

thing’ younger children were more able to demonstrate an appreciation of this 

scientific concept.  In the first study conducted with 44 participants children were 

asked to categorise 17 laminated cards dipicting photographs of objects (for 

example, a bear, a tree and the sun) according to whether they were ‘alive’ or not.  

The results to this study demonstrated that even the older children who had received 

tuition in scientific concepts such as cell biology including plant cells were less able 

to attribute the status of plants to the category ‘alive’.  In a second study conducted 
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with 90 children who completed the same categorisation task but this time using the 

concept term ‘living thing’ it was revealled that even the youngest participants were 

able to distinguish plants from non-living objects.  The results to this study were 

interpreted as demonstrating how basic terms can be misinterpreted by children to 

suggest animacy, a characteristic that is not readily observable in plants.  The 

discussion presented by Leddon, et al. (2008) implied that the use of ambiguous 

terms can mask young children’s appreciation of scientific concepts due to a 

misalignment between the concept terms accepted by adults and children’s 

meanings ascribed to them. In addtion it was suggested that  

 

“it is important to characterise not only the scientific concepts children bring to 

the classroom, but how children encode these concepts in words”. (p. 467)   

 

This study therefore accepts Johnson and Gott’s (1996) view that misunderstandings 

that occur within the adult-child interpretation interface could produce misleading 

results regarding children’s understanding of scientific concepts and all findings are 

considered in these terms.  As such, this research and as proposed by Johnson and 

Gott (1996), care was taken to remove ambiguities in meaning in order to facilitate 

children’s accurate interpretation adult questions and subsequent validity and 

reliability in the interpretation of research findings. 

 

In order to overcome this issue Johnson and Gott (1996) recommend that 

researchers need to find the neutral ground for interpretation. Bearing these issues 

in mind the researcher was extremely careful with the terms that were used 

throughout the activities and where possible aimed to use the same terms as the 

children in order to reduce misunderstanding. In addition, attention was paid to the 

gestures that children produced as these could, at times, reveal insight into the 

children’s ideas that were not present in their verbal speech. 

 

4.8  Discussion 

 

In this chapter, general methodological considerations of the research project were 

presented and discussed. At the beginning of the chapter, philosophical issues were 
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debated and it was concluded that in order to facilitate the effectiveness of the 

research discussed here a pragmatic approach was the most appropriate. This 

chapter then discussed the design of the research undertaken for this thesis, 

introduced the participants, and provided background information regarding the 

demographic details of the schools who participated. The discussions then reviewed 

some of the traditional constructivist approaches to exploring children’s ideas and 

debated these in the context of research findings. A multiple-method approach 

utilising group interviews, participant observation and practical science activities was 

developed. The activities were structured around dialogic teaching principles and 

collaborative learning groups in order to provide opportunities for the participants to 

develop their ideas using the materials given. The multimodal, task-based approach 

was then developed and piloted in three schools, the results of which were further 

used to develop materials for Research Phase 2 (a full evaluation of the results of 

the pilot studies is presented in Chapter 5).  

 

Importantly, one issue arising from Research Phase 1 was that in order to facilitate 

effective data analysis it would be advantageous to utilise the NVivo software 

programme. This programme was specifically designed for use with qualitative data 

and enables researchers to code a range of materials according to pre-selected 

themes or topics. As it was anticipated that the research undertaken in Research 

Phase 2 would generate a large quantity and breadth of data, the NVivo software 

would offer one solution to the difficulties of data tracking. As effective Nvivo projects 

can take some time to develop, coding strategies using a bottom-up process were 

also piloted and used as a basis for the subsequent coding (see also Chapter 5). 

Issues related to managing data were just one of the findings resulting from the pilot 

studies. Another key finding was the need to adjust the structure of the electricity 

activities so that it included an element of conceptual challenge, thus making it fully 

comparative with the floating and sinking activities. Using ideas from the science 

teachers in the schools themselves it was decided that an additional activity which 

used smarties in order to model and act out the role of electrons in a circuit should 

be added. The importance of the dialogic teaching approach (Alexander, 2004) was 

also acknowledged and the research sessions were adjusted accordingly. Finally, 

the importance of the multi-modal aspects of the task was highlighted (these will also 

be discussed in more detail in Chapter 5) in order to show how the multimodal, task-
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based approach was developed and how multimodal forms of analysis were 

generated using the traditional constructivist framework as an foundation. In the next 

chapter, a more detailed discussion of the multimodal research will be presented. 

The results from pilot studies will be used to highlight the importance of this 

approach and consideration will be given to the development of the analytical 

framework and the techniques developed in order to support the data analysis used 

during this study. 
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Chapter 5 Methodology 2: The Development of a Multimodal, Task-

based Approach 

 

 

 5.1 Introduction 

This chapter focuses on the major original contribution that this work makes towards 

the development of a multimodal, task-based approach as a means of studying 

children’s ideas in science. This approach aimed to utilise interviews about 

instances, focus groups and observation. As detailed in Chapter 4 and further 

discussed in this chapter, the approach also adopted a dialogic teaching technique 

and collaborative learning groups. This approach was developed to study the use of 

various modes of representation used in combination by learners undertaking 

practical activities in the science classroom. This chapter also outlines the original 

approach taken to data analysis.  

In this chapter a full review of the importance of attending to children’s gestures and 

other non-verbal behaviours is discussed and evaluated using the findings of key 

research into multimodal aspects of learning in general. The results of the recent 

pilot studies conducted as a part of Research Phase 1 (see Chapter 4 for details) are 

also used in order to demonstrate how the multi-modal task based approach to 

studying children’s ideas in science was developed for application in Research 

Phase 2. This chapter then turns to a full discussion of the development of an 

appropriate analytical framework in order to capture children’s gestures and 

evaluates their importance in relation to what they reveal about children’s ideas and 

knowledge. This chapter presents and discusses the storyboarding technique that 

was developed as a part of Research Phase 3 and used in order to analyse the 

practical science activities in a more holistic manner than usual. Finally, details of a 

timeline analysis framework developed in order to permit the detailed analysis of the 

development of children’s ideas within the session over time are presented. It is 
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important to note here that this analytical approach aimed to build in the traditional 

techniques for studying children’s ideas (detailed in Chapter 4). 

 

5.2 The Importance of Attending to Gesture and Other Non-

Verbal Behaviour 

 

As noted in previous chapters the majority of research investigating children’s ideas 

in science relies to some extent on the interpretation of children’s verbal reports 

made during either interviews or completion of various scientific tasks.  One key 

methodological difficulty with these studies is that it is hard to be certain that what 

children tell us that they know is actually the same as or a full account of what they 

do know.  However, recent research suggests that non-verbal behaviour such as 

gesture may offer an alternative or complimentary route to understanding children’s 

knowledge.  Gestures are considered to emerge in young children before they are 

able to talk (Bates, 1976; Thompson & Massaro, 1994) and remain present across 

cultures and languages in to adulthood (Wundt, 1921; Mead, 1934; Feyereisen & de 

Lannoy, 1991; Kendon, 1997).  When adults talk they often produce gestures even 

when the listener cannot see their non-verbal communication and it has been 

proposed that gestures are deeply integrated with other intellectual abilities (Roth & 

Lawless, 2002) including competence in navigation and orientation, sense of 

direction, and language (Haviland, 1993; Levinson, 1997; Widlock, 1997).  Research 

has suggested similar behaviour occurs in children, with children frequently 

spontaneously producing gestures when they are talking (Kelly, et al., 2008).   

5.2.1 What is a Gesture? 

 

As defined by Goldin-Meadow (2003a), gesture is a term that encompasses a wide 

range of behaviours. For the purposes of this work the focus is on the movements 

that children use when they are discussing their science ideas. Previous work, has 

however, defined the different forms that gestures or gesticulations can take 

(Kendon, 1980). For example, McNeill (2005) proposed that gestures can take four 

possible forms and each of these has its own relationship to speech, carries specific 

linguistic properties and conventions, and levels of semiosis (which is defined as 
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meaning). These four forms are: gesticulations, pantomimes, emblems and sign 

language (detailed in Figure 15). Whilst all four of McNeill’s forms of visual 

communication are widely used in research, this work is on gesticulations as these 

are not conventionalised and can carry meaning that is not conveyed in speech. 

 

 

 

Figure 15: Kendon’s continuum of different types of gestures proposed by McNeill 

(1992, 2005). 

 

Gestures can occur in isolation or they can, and more typically, accompany speech. 

Goldin-Meadow (2003a) proposed that gestures which accompany speech take on 

the intentionality that is found in verbal language, thus it is proposed that they are 

used to communicate something. McNeill (2005) proposed that gestures are an 

important aspect of communication and that they are linked to both speaking and 

thinking so much so that the imagery formed in gesture is part of an inseparable 

system in the brain. In a seminal book, “Hand and Mind”, McNeill (1992) highlighted 

that gesticulations or gestures can take four forms: 

 

• iconic gestures – which display a close link between the gesture and the 

speech, this form of gesture can refer to the object or action being mentioned 

in the verbal articulation and appears as though connected; 

• metaphoric gestures – similar to iconic gestures but the content is abstract; 

• deictic gestures – gesture which are used to indicate people, objects or 

locations in the real world; 
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• beat gestures – movement that appear to beat out musical time and have the 

same form regardless of the verbal articulation. 

 

It was later proposed that these gestures are produced unconsciously and that they 

appear in everyday speech (Beattie, 2004). Goldin-Meadow (2003a) also proposed 

that iconic, metaphoric and deictic gestures have the potential to reveal the 

speaker’s thoughts and in some cases may actually help to shape these thoughts.  

 

Although the interpretation of gestures can be open to subjective bias on the part of 

the researcher the study of children’s non-verbal behaviour may provide an 

alternative route to language that enables the researcher to gain insight into their 

thoughts (Kendon, 1980; McNeill, 1985, 1987, 1992). McNeill (1987, 1992) 

suggested that the gestures that are produced when people speak are a secondary 

means of conveying meaning. As such, gestures do not stand alone but are part of 

an integrated communication system, both language and gesture working together to 

provide insight into the mental processes and representations held in the mind of the 

communicator. However, McNeill also proposed that gesture communication differs 

from speech as it is controlled by different constraints. Because of this gesture may 

reveal a different kind of knowledge when compared to speech. Indeed Goldin-

Meadow, et al. (1992) have proposed that the gestures that children produce when 

undertaking problem-solving activities, for example Piagetian conservation tasks, 

may reveal more tacit or developing knowledge than hitherto acknowledged. It is 

worth noting here that this distinction between tacit knowledge and explicit 

knowledge in available verbal report bears striking resemblance to the distinction 

made by Donaldson (1992) between ‘light’ and ‘dark’. In her synthesis on “Human 

Minds”, Donaldson proposed that children’s knowledge may exist on a metaphoric 

continuum that ranges from ‘light’ to ‘dark’. Children are consciously aware of ‘light’ 

knowledge and as such, it is readily available for verbal report. In contrast, other bits 

of knowledge are contained within the ‘shadows’ or indeed in ‘darkness’, with this 

knowledge sitting either on the borders of conscious awareness or unavailable for 

conscious processing. As such this knowledge is rarely reported verbally but can be 

observed in behaviour. Donaldson stated: “paradoxically, we can know without 

knowing that we know” (p. 21). This view is supported by a study investigating 

mathematical algorithms and their use by 58 children in both their speech and 
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gesture (Alibali & Goldin-Meadows, 1993). The results of this study demonstrated 

that children had some procedures that were evident only in one modality (e.g. only 

in speech or gesture) and that across the children as a whole the number of 

procedures found only in gesture were higher than the number found only in speech. 

Thus, it was suggested that when gesture is analysed along with speech, clues and 

cues to developing knowledge states may be provided (Goldin-Meadows, et al., 

1992). This view has also been empirically supported in studies investigating 

children’s learning in science (Siegler, 1976; Crowder & Newman, 1993; Newman, 

1996; Roth & Lawless, 2002). 

 

5.2.2 Gesture and Learning Science 

 

Early research investigating 5 and 8 year-old children’s learning on an activity 

balancing weights (Siegler, 1976) revealed that the  8 year-olds gave non-verbal 

indications of their readiness to learn whilst the 5-year-olds did not. Siegler’s work 

which spanned 3 experiments and included a total of 120 female children drawn from 

a private school in America, not all of whom participated in the different conditions, 

aimed to unpick the developmental difference in children’s thinking. It was suggested 

that non-verbal indicators such as head movements could be interpreted as 

revealing the older children’s consideration of distance as a factor in the balance 

scale problem even though in their verbal discussions they did not reveal this 

consideration. The subsequent results of the study that investigated the potential 

benefits of tuition at different stages of concept development indicated that only the 

eight-year-old children benefited from instruction. As well as demonstrating 

readiness to learn, other research has suggested that gestures may be used to 

complete or complement children’s explanations and their scientific understanding. 

Crowder and Newman (1993), for example, studied the speech and gestures of 6th 

grade American children from two schools as they learned about seasonal change. 

The gestures and speech of 13 children during science lessons were used in the 

final analysis in which Crowder and Newman (1993) outlined a five-point distinction 

on the different types of gestures involved: 
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• speech-dependent / referential gestures (iconics and metaphorics) and 

discourse gestures (beats); 

• word-like or pantomimed gestures which may substitutes for words within 

verbal syntax; 

• points to a model; 

• gestures made with the whole body; 

• meaningful manipulation of a physical model. 

 

The analyses of videotapes revealed that children used these different types of 

gestures in three ways. Some gestures were redundant to the speech content; 

others served to enhance the ideas expressed through speech; and finally, in some 

cases, gestures served as carriers of scientific meaning. It is worth noting that 

Crowder also suggested that the use of gestures by children may support their 

construction of new conceptual understanding and this view is also supported in the 

work of Goldin-Meadow (2000). This led Crowder to conclude that “as long as ideas 

outstrip scientific vocabulary, one can expect to see gestures used by elementary 

science students to carry unstated ideas” (1996: p.176). Goldin-Meadow, perhaps 

one of the most prolific writers investigating children’s gestures, agrees that gestures 

do indeed convey knowledge and understanding and discusses ways in which 

gestures may be used in an educational context to support teachers’ (Goldin-

Meadow, et al., 1992; Goldin-Meadow, 2000). Goldin-Meadow’s work covers a vast 

range of subjects from investigations exploring the use gestures within 

communication by congenitally blind children (Iverson & Goldin-Meadow, 1998) to 

the ways in which gesture paves the way for language development (Iverson & 

Goldin-Meadows, 2005). In a review that draws on a body of research investigating 

different areas of children’s problem solving ability, Goldin-Meadow, et al. (1993) 

suggested that stability between speech and gesture characterises a stable 

understanding of a concept, while mismatch between the two elements characterises 

the time in which children are moving between conceptual understandings. It is 

argued that the “gesture-speech mismatch signals to the social world that an 

individual is in a transitional knowledge state” (Goldin-Meadow, et al., 1993: p. 279). 

Goldin-Meadows, et al. (1993) suggested that this signal may be a behavioural 

feature of the child’s ability to benefit from tuition within Vygotsky’s Zone of Proximal 
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Development (Vygotsky, 1978). Whilst the proposal that mismatches indicate a 

‘readiness’ to learn through the Zone of Proximal Development has yet to be fully 

supported, other aspects of Goldin-Meadows’ proposal do appear to indicate the 

existence of more than one conceptual framework existing in the children’s 

responses at the same time. According to the analysis offered new concepts and 

conceptual understandings appear in gesture first before subsequently being subject 

to speech-based reports. Roth and Lawless (2002) upheld this view when they 

stated: 

 

“In terms of conceptual development, gestures express features of scientific 

concepts and relations prior to the equivalent representation in verbal 

discourse…gestures appear to scaffold the emergence of students’ 

observational and theoretical language….” (p. 287)  

 

Roth and Lawless’ research investigating the role of gesture in the development of 

abstract scientific concepts in American children of different ages (grades 4 - 12) 

draws evidence from ten years of classroom studies. The authors reviewed 

videotapes from different science subjects including simple machines, ecology, 

physics, chaos theory, and static electricity, and concluded that when students learn 

science they first demonstrate their knowledge through metaphoric gestures while 

the appropriate scientific language emerges much later. One example presented is 

of 10th grade children in a German physics class who were learning the scientific 

concepts associated with static electricity through investigations that they had 

designed themselves. This analysis demonstrated how one student, Paul, completed 

his sentences with physical movements that demonstrated different aspects of 

scientific understanding not present in his verbal articulation of his ideas (see Figure 

16). 
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Figure 16: A 10th grade German student uses his gestures to depict electrons and 

their movement in a metal rod in order to explain why a pith ball bounced in the 

experiment he had conducted (Roth & Lawless, 2002). 

 

Using these and other findings from the study, Roth and Lawless concluded, “our 

data seem to suggest that students already have a semantic model, but their verbal 

competencies have not yet developed.” The lag between the formation of a semantic 

model and establishing appropriate verbal competencies may have a significant 

impact on younger children’s verbal reports especially when younger children may 

still be developing general language competencies. In addition to providing the 

learner with a scaffold that facilitates the development of appropriate linguistic labels, 

a multimodal study investigating the use of gesture in a group of three American 6th 

grade children proposed that gestures were used to socially negotiate scientific 

understanding of plate tectonics (Singer, et al., 2008). Singer, et al.’s (2008) study 

systematically explored the small group interaction of the 3 students as they 

developed their conceptual understanding of the plate motions. The data were drawn 

from 40 video-recorded episodes of classroom activity and analysed for both speech 

content and non-verbal behaviour. The resulting analyses revealed that students 

were able to “change both their own and one another’s understanding by 

manipulating embodied representations of the domain concepts being explored” 
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(p.383). In addition, the study revealed that the gestures children used for concepts 

preceded verbal articulation of concepts for every student investigated.  

 

With the evidence reviewed in mind, and the significant finding that a mismatch 

between gesture and speech may indicate knowledge in transition, is of fundamental 

importance to this study and its investigation of notions of conceptual change. As 

Goldin-Meadows, et al. (1993) stated: 

 

“In gesture-speech mismatch, two beliefs are simultaneously expressed on 

the same problem – one in gesture and another in speech. We suggest that it 

is the simultaneous activation of multiple beliefs that characterises the 

transitional knowledge state and creates gesture-speech mismatch.” (p. 279)  

 

If indeed this proposal does indicate that conceptual restructuring is taking place a 

detailed analysis of children’s speech and gesture during science activities may be 

helpful for highlighting the processes of conceptual change.  

 

Critically, the interpretation of gestures can be open to subjective bias, for example, 

one person’s interpretation of the content of a gesture may differ to another’s (as 

shown in Johnson & Gott’s translation interface, Chapter 4, Section 4.7). However, 

despite this potential problem, the study of children’s non-verbal behaviour may 

provide an alternative route to language that enables the researcher to gain insight 

into their thoughts (Kendon, 1980; McNeill, 1985, 1987, 1992).  McNeill (1987, 1992) 

suggested that the gestures that are produced when people speak are a secondary 

means of conveying meaning.  However, McNeill also proposed that gesture 

communication differs from speech as it is controlled by different constraints and 

because of this gesture may reveal a different kind of knowledge when compared to 

speech.  However, NcNeill’s proposal is not without its criticisms and Krauss (1998) 

proposed that in fact gesture and speech may be two separate systems, with gesture 

merely playing a supporting role for accessing words during speech. Whilst such 

criticisms have been highlighted in the literature, the importance of studying gesture 

for both research and applied work has been strongly supported (Kelly, et al., 2008). 

This proposal and others like it have led to the development of multimodal research 

as a field.  
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5.2.3 Multimodality: a Richer Context for Understanding Children’s 

Ideas 

 

From what can be established, multimodal research is still in its infancy but is 

beginning to gain momentum in science education research (Ogborn, et al., 1996; 

Kress, et al., 1998; Kress, et al., 2001).  The indication that communication takes 

place through a number of modes including language and non-verbal behaviours 

such as gesture forms the foundation of this approach (Kress, et al., 1991; Jewitt, et 

al., 2001; Jewitt, 2011).  An analysis of multimodal data has the potential to interpret 

different modes of communication for their underlying meaning.  Studies which have 

adopted this approach in order to explore how scientific concepts are constructed in 

classroom environments already exist (Jewitt, et al., 2001; Franks & Jewitt, 2001; 

Roth & Lawless, 2002; Jaipal, 2009). The use of multimodal analysis in science 

education is a developing area but the one study by Jewitt, et al. (2001) explored 

learning in the science classroom using this approach.  The authors proposed that 

by extending communication to cover all modes the study was able to reveal the 

“central role of action in the learning of science” (p. 5).  Jewitt, et al. (2001) suggest 

that texts are one form of evidence that can reveal students’ knowledge, whilst other 

forms such as verbal language represent other modes of understanding.  The 

analysis presented by Jewitt, et al. is based on observations of pupils producing 

texts, interviews with pupils about their experiences and an analysis of the texts 

themselves.  In their conclusion the authors suggested that in the process of 

constructing an understanding of a scientific concept children collate, select and 

transform information from the whole range of communication modes.  In addition 

the authors proposed that by adopting a multimodal perspective advantages are 

gained over approaches which rely on verbal responses alone.  In a further paper, 

Franks and Jewitt (2001) suggest that speech and gesture have different but 

complimentary roles in children’s conceptual thought.  Each mode has a relationship 

to the way in which meaning is made.  Using excerpts from a science lesson 

transcript the authors demonstrated how children revealed conceptual knowledge 

through non-verbal communication such as body posture, facial expressions, and 

gestures.  In order to complete their analyses the authors viewed the video tape of 
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the science lesson on many occasions, sometimes with only sound, other times with 

only image and finally with both sound and image together.  This approach enabled 

the researchers to tune into all aspects of communication as expressed through the 

variety of modes.  The results of the study demonstrated that action (for example, 

body posture, gestures and orientation to other students) serves the role of 

communicating meaning as well as shaping the subsequent interaction.  Jaipal 

(2009) presented one final study of interest to the current research project.  Jaipal 

investigated how a science teacher used different modalities when teaching biology 

to children.  Jaipal constructed a transcription approach that categorised modalities 

according to the order in which the teacher employed them when explaining a 

number of target concepts.  The results of this study demonstrated that the teacher 

selected different modalities in order to express different levels of conceptual 

understanding.  Jaipal proposed that these result demonstrated the way in which 

different communication modalities can be used to scaffold the development of 

scientific concepts.  

 

In addition, the results of the pilot studies for Research Phase 1 of this thesis, 

Chapter 4, provides additional evidence that such multimodal analyses do indeed 

add greater depth to our understanding. By way of example, here, it is clear that the 

children taking part in the electricity activity use non-verbal cues to complete their 

intended meaning (RS = researcher, other non-verbal column is used to highlight 

aspects of social interaction and non-verbal behaviour that is not gesture based).  
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Time Person Verbal Report Gesture Other non-
verbal  

07:22 RS Ok, so can you tell me what 
is happening to make the 
bulb light? 

Points to the 
completed 
circuit. 

 

07:31 Rachel   Laughs and lifts 
her hand to her 
hair. 

 Rachel Erm, the batteries are 
making the power go all the 
way, no, the electricity go all 
the way to make the bulb 
which is making it… 
(hesitates at this point). 

Uses her right 
index finger to 
trace a path 
which begins 
by touching 
the battery 
pack and then 
follows one of 
the wires from 
its connection 
at the bulb 
pack to the 
bulb. 

 

07:41 Sally Light up.  Is watching 
Rachel’s 
demonstration 
and looks at her 
as she 
hesitates. 
Following her 
articulation both 
girls look at 
each other, 
Sally has her 
hand across her 
mouth and 
Rachel smiles. 

 Rachel Yeah.  Giggles. 
07:44 RS Ok, do you agree with that?  Looks to other 

members of the 
group.  Sam 
shakes his head 
and moves 
forward to 
speak. 

 Sam Is it cuz, like, on there, 
there’s two pieces of metal 
like and on there and then if 
you like clip them on 
they’ll…thing…like 

Points to the 
metal 
connectors at 
the battery 
pack and then 
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something will go through 
there and it connects like on 
the metal to there which the 
battery power will go 
through there. 

moves his 
hands to the 
connectors at 
the bulb, 
traces a path 
along the wire 
from the 
battery pack 
to the bulb 
using his right 
index finger, 
repeats this 
action by 
moving his 
hands back to 
the crocodile 
clips and then 
traces a path 
again along 
the wire to the 
bulb. 

Table 10: An excerpt from a transcript of Year 6 children taking part in one of the 

electricity activities developed for the pilot studies for this thesis.  

 

This excerpt can be compared with the conventional approach detailed in Chapter 4, 

page 114, such direct comparison reveals the additional dimension that is provided 

by using a multimodal transcript. Analyses of the data presented in the transcript 

demonstrated that whilst directional comments remain absent from the verbal reports 

offered by children when discussing their conceptions of electricity, such information 

is available in their non-verbal behaviour.  With this evidence in mind it is suggested 

that although research interviews, focus groups, drawings and observation are useful 

for eliciting children’s ideas it was anticipated that the research would require 

additional research protocols in order to analyse the potential interaction between 

gesture and other non-verbal behaviour and other responses. In light of this, an 

analytical framework was developed to accommodate this.  
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5.3 Children’s Gestures in Science - Results of the Pilot Studies 

 

The results of the pilot studies were subjected to a preliminary analysis in order to 

explore whether or not children used gestures during the activities, whether these 

appeared to be meaningful and whether or not this form of analysis could be used to 

inform on how ideas changed both within age groups and between them. In order to 

achieve this, the audio-visual recordings were transcribed for their content 

(Kracaucer, 1953; Schreier, 2012; Krippendorff, 2013) and coded using a bottom-up 

process in which emerging themes were identified and then explored.  The most 

successful approach to capturing action and gesture was to use two static cameras 

in the classroom. These were located so as to give the best view of the children 

(Goldman, et al., 2007). A data-driven content analysis was then conducted in order 

to explore what types of gestures children used during the activities and what role 

these gestures appear to have within the context of the activities (Figure 17). 

 

 

 

Figure 17: The different types of gesture identified during the pilot studies conducted 

as a part of Research Phase 1. 
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Overall the gestures appeared to fall into two categories: scientific and social 

(Callinan & Sharp, 2011). The scientific gestures came in four main forms: 

 

• referential – e.g. pointing to objects, pictures or people in the immediate 

environment; 

• representational – e.g. re-enacting the behaviour of objects, the content of 

pictures, or factors related to people; 

• expressive – e.g. often including repetitive movements or building on 

representational gestures revealing the values associated objects, pictures or 

people; 

• thinking – e.g. finger drumming, waving hands, head holding or face and hair 

stroking.  

 

The children frequently used referential gestures during their discussions. These 

included pointing to objects, pictures or people, and appeared to be used in order to 

complete their discussions.  For example, Alan, a Year 2 (7-year-old) boy; engaged 

in constructing a simple circuit, used a referential gesture to indicate the presence of 

an object that was not readily observable as he discussed why a bulb in the circuit 

lights up.  His pointing gesture which was directed at the bulb in a simple circuit was 

accompanied with “is it because there’s a little metal thing in there...”  The use of this 

gesture appeared to indicate his awareness of the functional role that objects such 

as the bulb’s filament, which is barely observable, play within electrical circuits.   

 

Whilst referential gestures appeared to enable children to directly link their 

discussions to items within the science classroom, there was also evidence that 

rather than indicating objects directly, children would act out the behaviour of objects 

using their hands.  These gestures were classified as ‘representational’ which 

appeared as ‘charades’ (e.g. the hands were used to represent an object, an event 

or the interaction between things).  One Year 2 child, Mary, frequently used 

representational gestures as she worked through her ideas of floating and sinking: 

one hand was used to represent an object and the other for the liquid, in this case 

water, in which the object was floating.  Her hands were positioned one above the 
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other, both palms facing downwards, the lower hand, which represented the water, 

remained stationary, whilst the top hand was gently lowered towards the stationary 

hand before being brought to a stop on top of the lower hand.  This representational 

gesture appeared to be her way of explaining that the water remains stationary whilst 

the object is lowered into it, and once in place, the object is supported by the water 

and remained above the surface.  Expressive gestures, which included repeated 

movements or emphasis, were used by children to demonstrate values such as the 

strength of responses.  In one example, Joe, a Year 6 (11-year-old) child, cupped his 

hands and then repeatedly moved them apart through a sideways motion to indicate 

how he thought a bulb would brighten if more batteries were added to a circuit.  

Thinking gestures appeared to include behaviours such as finger drumming, head 

holding and face and hair stroking.  In one example drawn from the pilot studies, the 

same boy, Joe, was discussing his ideas about electricity. As he did this he 

repeatedly paused and drummed his fingers on the table.  This type of behaviour, 

which can often be seen as a disruption to group or class work, was interpreted as 

Joe’s non-verbal method of signifying that he was thinking through his own ideas 

before making a considered response.  

 

While scientific gestures appeared to play a crucial role in children’s communication 

and in facilitating an understanding of children’s scientific ideas, social gestures also 

appeared to have an important role for facilitating an understanding of how young 

children used input from peers in order to structure their responses to probes or to 

seek social support when they were experiencing uncertainty or difficulty in 

generating a response. During the course of the pilot studies there were many 

instances which demonstrated how the children used such non-verbal approaches to 

elicit help from each other. Whilst these gestures can be interpreted as 

demonstrating little regarding children’s scientific ideas they appeared to be 

specifically useful for revealing how children negotiate meaning in groups. These 

findings can be related to the social aspects of constructivism as identified in 

Chapter 2, and more specifically can be located in the work of Solomon (1987) and 

the social aspects of constructivism identified by Driver (1995, see Chapter 3).  

 

The preliminary analyses exploring the congruency between verbal and gesture-

based communication further revealed that gestures did appear to contain valuable 
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information regarding ideas and concepts that are not included in verbal responses.  

For example, analyses of gestures produced during the floating and sinking pilot 

studies revealed that children might be considering variables such as the shape of 

objects even though such verbal references to shape were frequently omitted. 

Overall, it is proposed that this classification of types of gestures for the first time 

captures those that may be most relevant to the science classroom whilst previous 

studies and categories have been less domain specific in nature. 

 

In addition to demonstrating the importance of children’s gestures, the pilot studies 

were also used to further develop the methods used as detailed in Chapter 4. In 

addition the pilot studies informed the design of an analytical framework for 

analysing the data drawn from Research Phase 2’s probes of children’s ideas for 

electricity and floating and sinking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



167 

 

 5.4 Towards a Multimodal Analytical Framework 

 

As discussed in Chapter 4, children were recruited to take part in two practical 

science activities. These activities were undertaken using the newly developed 

multimodal, task-based approach (summarised in Figure 18). 

 

This method was developed from the review of the different approaches to data 

collection. This made it clear that for the aims of the current study no single 

approach offered the flexibility that was desired in order to explore children’s ideas in 

adequate depth.  In order to develop an appropriate approach different elements 

were drawn from the different methodological approaches reviewed.   

 

 

 

Figure 18: An overview of the multimodal task-based approach. 
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The multimodal, task-based approach developed here (not to be confused with 

multiple methods or mixed methods) aims to achieve this by incorporating different 

methodologies into one design and it is anticipated that the strengths of each 

approach can be utilised to elicit children’s ideas, by probing knowledge and 

understanding at an appropriate level of depth so that a richer insight of how they 

learn science can be achieved.  This approach utilises interviews about instances 

and events (White & Gunstone, 1992), focus groups (Kitzinger, 1994), and 

participant observation techniques (Wragg, 1999) into a multimodal framework 

(Kress, et al., 2001; Taylor, 2006; Jewitt, 2011).  It is proposed that by incorporating 

elements of these different methods into one framework the inherent difficulties with 

each of these research approaches can be minimised.  This route to investigation 

provides a form of methodological triangulation (Denzin, 1978) but also offers a more 

holistic approach to investigating children’s ideas.  The approach is designed to 

reinitiate the context of the science classroom by utilising collaborative group work 

(Howe, et al., 2007), a dialogic teaching approach (Alexander, 2004) and practical 

science activities that frequently form the basis of science education in schools.  The 

guidance of the semi-structured interview schedule and structured activities permit 

both the elicitation of children’s ideas and the opportunity to challenge these ideas 

through practical demonstrations of alternative explanations of the phenomena 

associated with electricity and floating and sinking.  It is proposed that by challenging 

children’s existing ideas, the subsequent multimodal analysis which aims to highlight 

areas of match and mismatch (Godin-Meadow, et al., 1992) between response types 

may begin to uncover the processes of conceptual change or at least the impact that 

conflicting information may have on existing knowledge.  In addition, the 

incorporation of the observational approach permits the researcher the reflexivity 

required to adjust the interview schedule to suit the abilities of the participants as 

well as the opportunity to follow unanticipated events arising during the science 

activities. 

 

In order to support the analysis of the multimodal aspects of the science activities it 

was clear that it was necessary to develop a new analytical framework in order to 

capture the levels of detail required. In the next section the development of this 

analytical framework will be described. This framework utilised content and 

multimodal analysis and a storyboard analysis which shows the underlying meaning 
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or content associated with each mode of communication (drawings, written and 

verbal language and gesture). Further to this in order to explore how ideas had 

changed, if at all, over time during the course of each science activity a timeline 

analysis approach was developed from the work of Givry and Tiberghein (2012). 

 

5.4.1 Levels of Analysis and Comparison within the Study 

 

As previously discussed, in order to capture the range of response types and explore 

them for their utility in supporting our understanding of children’s ideas the analysis 

of data collected during the pilot indicated a number of levels was required. In 

addition, in order to explore how changes take place over time and how these 

changes may be influenced by the science topic studied or the age of the 

participants, the study would also be conducted with a multi-layered comparison of 

the data (see Figure 19 for a summary). 

 

 

 

Figure 19: Levels of comparison and levels of analysis for Research Phase 3.  

 

Notably in this study, it was important to attend to the content of ideas presented in 

verbal and written forms of language, as well as the content of drawing and the 

content of gestures. Although a review of literature revealed a range of different 
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analytical approaches that could have been taken (e.g. conversation analysis, and 

discourse analysis Goodwin & Heritage 1990, 1999 and Gee, 1999) it was 

determined that the most useful approach would be to use content analysis for 

attending to each of these levels (Krippendorff, 2012). 

 

 

5.4.2 Content Analysis 

 

In order to explore children’s ideas it was determined necessary to analyse the data 

in order to explore the underlying frameworks of understanding that the children 

were applying during the activity using content analysis. The roots of content 

analysis can be traced back to the beginning of the use of symbols and verbal 

discussions (Krippendorff, 2012). Despite these distant roots, contemporary content 

analysis has three features that Krippendorff (2012) proposed distinguish it from 

earlier forms: 

• it is empirically grounded; 

• it transcends notions of symbols, contents and intents; 

• contemporary content analysis has been forced to develop a methodology of 

its own. 

In summary, content analysis entails a systematic approach to reading text, images, 

and all other symbolic matter which is generated during research. It is defined by 

Krippendorff as: 

 

“…a research technique for making replicable and valid inferences from texts 

(or other meaningful matter) to the contexts of their use.” (2012, p.24) 

 

Over the course of its history, content analysis has been used to address a range of 

topics including newspaper content, propaganda, computer text and social and 

political problems (Krippendorff, 2012). The analysis itself can come in two forms, a 

quantitative version which focuses of counts and occurrences of themes drawn from 

the data and a qualitative version where the process is used as a method for 

describing the meaning of qualitative data (Schreier, 2012). However, this distinction 
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of forms is not without its challenges and Krippendorff (2012) proposed that the 

usefulness of this distinction should be questioned as all reading of symbolic matter 

is qualitative because of the level of interpretation used. The aim of the content 

analysis is to explore the data in order to uncover patterns of responses that can be 

categorised into groups or themes in order to reduce the data to a more manageable 

size. According to Krippendorff (2012) content analysis introduces a number key 

components to be conducted. These include: 

 

• unitising – defining relevant units; 

• sampling; 

• recording/coding the data in order to explore the occurrence of the units 
identified; 

• reducing the data to manageable representations in order to summarise or 
simplify the data; 

• abductively inferring contextual phenomena; 

• narrating the results of the research questions. 

 

Importantly, the job of the researcher is to identify the units of analysis. These can be 

categories, concepts or themes that appear in the data. Once the units have been 

identified the researcher then uses these units to reduce other data produced by the 

study. The process is not, however, linear and the researcher should undertake a 

constant comparison between the units initially identified and those that arise from 

the data in order to check for validity and reliability and to ensure that the results 

drawn from the study are a true representation of the data (Krippendorff, 2012, 

Schreier, 2012).  

 

Within science education research, content analysis is perhaps one of the most 

widely used approaches for analysing data. One reason for this is that it permits the 

researcher to explore the data that may be unique to their study and to uncover the 

units or categories and themes that are most relevant within the context of their 

study. Chi (1997), for example, produced one important paper that was designed to 

provide researchers with guidance for how to approach analysing children’s ideas 

drawn from research interviews. Within the context of this study a content analysis 
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approach was taken in order to capture children’s ideas in electricity and floating and 

sinking. Whilst important frameworks have already been identified by previous 

research studies (e.g. Havu-Nuutenan, 2005 and Borges & Gilbert, 1999), the first 

stage of the data analysis for Research Phase 2 was to compare and see if further 

frameworks not yet identified were found within the sample. The rationale for this 

was based on the unique qualities of both the research approach adopted here and 

the sample investigated. Previous research has generally paid more attention to 

verbal language and other multiple-method techniques than to gesture. However, 

this work would also systematically utilise a content analysis approach to exploring 

the underlying meaning contained in children’s gestures in order to investigate 

whether these can be helpful for helping to identify children’s ideas. In order to 

support the analysis of gesture, some guidance for data transcription and analysis 

was drawn from multimodal research.  
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5.4.3 Developing an Approach to Data Transcription and Analysis 

 

Using guidance from previous research (for example Taylor, 2006; Kress, et al., 

2001) the transcription of the data from Research Phase 2 was achieved by 

attending to two modes or forms of communication, the visual and the verbal. 

According to multimodal research it is typical to transcribe across three conditions 

with each condition adding to the layers of meaning captured (Jewitt, 2011). These 

three conditions are visual and verbal together, then verbal dialogue in isolation and 

finally the visual responses in isolation (Jewitt, 2011).  Previous research has 

suggested that by transcribing in this way it is possible to limit interference between 

the two modalities and thus provide a comprehensive transcript of the data. As the 

study generated a large corpus of data the researcher used the first level of 

transcription to purposively sample specific areas within the videos that contained 

details that were rich enough to require a full three layered transcription (see Table 

11 for further details of the data generated during the study).  

 

 
Topic: Electricity 

 
Age Group Total Number of 

Video Files (Note 2 
cameras per 
group) 

Location of 
Participants 

Number and Size 
of Groups 

Y2 10 Village Primary 
School 

4 x groups of 4 
1 x group of 3 

Y2   2 City Independent 
School 

1 x group of 15 

Y6 12 Village Primary 
School 

5 x groups of 5 
1 x group 3 

Y6   2 City Independent 
School 

1 x group of 16 

Y9 10 Village Secondary 
School 

2 x groups of 4 
1 x group of 3 
2 x group of 2 

 
Topic: Floating and Sinking 

 
Y2 10 Village Primary 

School 
4 x groups of 4 
1 x group of 3 

Y2   2 City Independent 
School 

1 x group of 15 

Y6 12 Village Primary 
School 

4 x groups of 5 
2 x group of 4 

Y6   2 City Independent 1 x group of 14 
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School 
Y9 10 Village Secondary 

School 
1 x group of 4 
2 x groups of 3 
2 x group of 2 

Table 11: Details of all the groups of children taking part in Research Phase 2 and 

the resulting video files. 

 

This approach permitted the researcher the opportunity to reduce the data to a more 

manageable size and the opportunity to exclude data, for example, off-topic social 

conversations between the children that were not directly relevant to the study.  In 

order to establish an appropriate analytical approach for the multimodal analysis it 

was important to review strategies that had been previously used by others to 

explore both audio and video data.  For this work it was important to capture a wide 

range of response types including verbal language but also incorporating analyses of 

non-verbal responses including gesture.  Therefore, it was important to adopt an 

approach that would permit the accurate comparison of these response types.   

Transcription of the audio-video recordings of the science activities was the first step 

undertaken in the qualitative data analysis. Powney and Watts (1987) have 

suggested that transcripts of such data are useful as a means of verifying the 

knowledge demonstrated by participants.  However, as with all research, it is 

important to note that the selection of extracts for inclusion is a filtration process and 

this can lead to omission of valuable information that may alter the context of the 

findings.  The judgement and discretion of the researcher exercised when selecting 

such extracts for subsequent reporting limits the significance that these may have 

(Denscombe, 1998).  As well as picking out appropriate quotations that demonstrate 

the levels of understanding that children demonstrate the analysis consisted of a 

content analysis in order to generate descriptive data.   
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5.4.4 Multimodal Analysis 
 

 

Multimodal analysis is a relatively new approach to analysing video and audio based 

research media (Jewitt, 2011).  The method is specifically designed to capture 

communication and meaning making across the multiple routes of expression. These 

routes include speech, gestures, whole body movements, gaze direction during 

interaction with others, writing, pictures and manipulation of objects.  Importantly it is 

proposed that action, visual and linguistic resources available during communication 

and interaction work in together in order to develop meanings.  In science education, 

such a method was developed from an ESRC funded research project investigating 

the rhetorics of science classroom (Kress, et al., 2001).  It is proposed that because 

communication takes place across these multiple modes by transcribing and 

analysing each of these features it is possible to collect a more comprehensive or 

‘thicker description’ of communication (Taylor, 2006).  This approach to analysis 

attempts to reveal more detail than is permitted by analysing language in isolation or 

offered in the rudimentary analysis of situation offered by conversation analysis or 

the basic level of non-verbal detail accessible in discourse analysis (Goodwin & 

Heritage, 1990; Gee, 1999).  Unlike discourse analysis (Gee, 1999) this method 

requires that the researcher transcribes the multiple domains separately on a time-

logged transcript. In effect the resulting data includes individual columns so that 

running concurrently with all articulations details of all non-verbal communication are 

also recorded (see Table 12 for an excerpt drawn from one of the Year 8 pilot 

studies completed in Research Phase 1, RS=researcher). 
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Time Person Verbal Report Gesture Other non-
verbal  

 RS Ok, so I would like you to have 
a think for me about things that 
float and things that sink, ok 
(pauses) right, ok, so what do 
you think floating is? 

 Two of the 
children put their 
hands up 

0:34 Tom Something that doesn’t go 
under water 

  

 RS Ok  Looks at Julie 
who has her 
hand up 

 Julie It rises above the surface   
 Steven Erm, yeah Waves his arm 

backwards and 
forwards and 
then places both 
hands on the 
table 

Smiles at Julie 
and then turn to 
face Tom before 
lowering his gaze 
to the desk 

0:45 RS When you say it rises above 
the surface what do you mean? 

 Looks at Julie 

 Steven I know… Waves his index 
finger at shoulder 
height 

 

 Julie Erm…  Hesitates and 
looks away from 
the researcher to 
Steven 

 Steven It stays on the top  Places his elbow 
on the table 
leaving his hand 
at face height, 
lowers the left 
side of his face 
into hand 

 Steven And erm…its stay on top of the 
water 

Uses his left 
index finger to 
trace a path 
across the water 
level in the 
transparent bowl 
that is present on 
the table 

 

Table 12: An excerpt from a Year 8 pilot study transcript showing all the different 

levels of communication captured in order to illustrate the importance of different 

responses types. 

 

The formation of the transcript permitted the researcher to analyse all forms of 

communication used at any one time, thus making it possible to identify where the 

domains are consistent and where inconsistencies arise.  This approach therefore 
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aimed to capture some of the components necessary if gestures were to be 

analysed for their interaction with verbal meanings expressed during scientific 

enquiry.  As with all methodological approaches multimodal analysis has its 

strengths and limitations.  The key methodological disadvantages of this approach 

depends on the way in which data are collected, clearly it is advantageous to audio-

video record all of the activities of interest but this results in substantial ethical issues 

regarding the use, storage and publication of data (Goldman, et al., 2007).  The 

multiple layers of transcription required for the subsequent analysis can be very time 

consuming and require that care is taken in order ensure that each of these layers 

are drawn back together appropriately for their subsequent interpretation.  As with all 

research methods, multimodal analysis is open to researcher bias in the collection, 

coding, and interpretation of the data (Jewitt, 2011).  Finally, as this method is 

currently under development the approach is still establishing an appropriate 

analytical framework and as yet there is no clearly defined approach to transcribing 

gestures and non-verbal behaviour.  

Despite the limitations, however, it is clear that the multimodal approach to data 

analysis permitted the level of detail required in order to address the research 

questions.  Therefore, the current research adopted an approach to qualitative data 

analysis that utilised the multimodal approach where the responses across the 

communication types, language, writing, drawing and gesture, were interpreted for 

their meaning and compared.  As discussed previously (see Table 11) in order to 

keep track of the large corpus of data generated by this work specialist research 

software (NVivo 9) was used in order to code the transcripts drawn from Research 

Phase 2. It was important for the researcher to maintain a clear picture of the way in 

which children were using gestures throughout the science activities, and what if 

anything these could add to an understanding of conceptual change therefore 

incidents of the five different categories of gesture identified in the pilot studies were 

coded using the NVivo software programme. It is important to note here that the 

researcher remained open to the identification of new categories; however, in all 

instances gestures observed in Research Phase 2 could be interpreted within those 

already identified (see Chapters 6 and 7). NVivo can accommodate a range of 

different electronic file types including audio, video, text, spread sheet, pdf and 

image files. This was considered to be advantageous as it offered the researcher the 
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opportunity to capture different types of data in one place and enabled the 

researcher to utilise this programme in order to explore key aspects of the data, for 

example, by importing and coding the transcripts it was possible to assess the 

frequency with which the different types of gesture were used by the children during 

the two science activities. It also permitted an analysis of whether the types of 

gesture used varied according to the topic, electricity or floating and sinking. 

However, in order to successfully develop the NVivo project it was important to pilot 

this (Bazeley, 2007). This entailed importing text versions of the transcripts, some 

still images drawn from the video files and some scanned versions of the children’s 

drawings. Piloting demonstrated that the programme was particularly helpful for 

assessing the prevalence of gestures and for tracking single children through the 

activities in order to explore whether their ideas appeared to change. The still images 

were particularly helpful for illustrating examples of the gestures being studies (see 

Figure 20 for a screen capture of a photograph being coded in the NVivo 

programme). Importantly, NVivo also permitted the researcher to add notes to 

important pieces of information such as the images which could be used as a guide 

for subsequent coding. The researcher’s use of the product was sufficiently unique to 

attract an invitation from QSR to give a presentation on the effective use of the 

software at the BETT educational exhibition at London Olympia in 2012. 

Fundamentally, it was proposed that this process of electronic coding enabled the 

researcher to keep track of data and to more effectively assess the findings of the 

research project. However, it was important to note that there are some criticisms 

regarding using electronic software in qualitative analysis that needed consideration. 

According to Krippendorff (2012), one important disadvantage is that reliability 

checks are not actually conceivable. Krippendorff (2012) proposes that although 

different researcher can receive the same instructions on how to code data, these 

instructions may be interpreted differently. Thus, although it can appear that 

computer software makes the process of analysis more transparent, it is actually still 

heavily influenced by the views and beliefs of the researcher. Krippendorff (2012) 

also proposed that electronic software uses a specific approach to identifying 

meaning, e.g. that the same word always has the same meaning even in different 

contexts. Although this criticism is valid, particularly if autocoding and text searches 

are used, it is suggested that part of the role of the researcher in the electronic 

coding process is to ensure that such difficulties are overcome and the researcher 
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can recode accordingly. Despite the difficulties associated with using software such 

as NVivo, the advantages of keeping control of such a large corpus of data were 

overwhelming and most coding was accomplished through the use of the software. 

 

 

Figure 20: A screen capture of a photograph coded using NVivo during the research 

project. 

 

5.4.5 The Storyboarding Approach to Data Analysis 
 

 

Whilst the NVivo project detailed above was specifically helpful for identifying 

children’s use of gesture it was less helpful for directly comparing how children 

discussed their ideas across different response types and indeed it was less able to 

capture important moments of interaction within a single group. According to the 

literature there are many different techniques that can be used for reducing data in 

order to make it manageable (Krippebndorff, 2012; Shreier, 2012), and so that it is 

possible to pick out the important aspects of the contents. As one of the aims of this 

study was to explore the importance of gesture and what this added to an 

understanding of children’s ideas it was important that the different response types 
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should be analysed side by side. This required these responses to be translated into 

a framework that facilitated easy and direct comparison of the meaning contained in 

various forms of communication.  In many studies, researchers simply interpret the 

data for its meaning and use these interpretations in a comparative process. 

However, because the aim of this study was to draw various levels of fine-grained 

data into a form that permitted easy comparison over a range of Levels (see Figure 

19) a different approach was required.  Therefore an analytical approach, which can 

be best described as storyboarding, was developed.   

 

The storyboarding approach described here entails using the participants’ responses 

to generate groups of ideas that appear to be interconnected.  These groups are 

then drawn out into a visual model (see Figure 21), which aimed to reveal how ideas 

may have been developed from other ideas and the structures that may lie beneath 

them.  This process was completed for each of the responses, leaving room within 

each storyboard to show the various response types and how these informed the 

frameworks attributed to each of the children. Within the storyboards for each group, 

a first level content analysis of verbal and gesture responses was conducted and the 

comparison of these two response types was used to assess the presence of a 

match or a mismatch between them. A total of six storyboards were completed. One 

for each age group in each science activity (e.g. one for Year 2 in electricity and one 

for Year 2 for floating and sinking, one for Year 6 for electricity and one for Year 6 for 

floating and sinking, etc.). The storyboards were used in order to facilitate 

comparison and address the research questions, particularly as they enabled the 

researcher to explore whether or not children’s ideas had indeed changed during the 

science activities and they enabled the direct comparison between the content and 

meaning ascribed to each of the different communication strategies (e.g. language 

and gesture).  
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5.4.6 Development of a Timeline Analysis for Networks of Ideas 
 

In order to explore that way that the children’s ideas changed over time during the 

activities, a timeline analysis approach was developed. This drew on the work of 

Givry and Tiberghein (2012), who developed something similar for analysing the 

ideas that children used during physics lessons. In this approach the main ideas that 

children used were mapped against the time at which they appeared in discussions. 

Givry and Tiberghein (2012) used these timelines to propose ways that networks of 

ideas were related to each other and the number of concepts that were available in 

those networks. In summary these researchers aimed to show the size of the 

concept networks that children used. This idea for an approach to analysis was 

further developed for this work but instead of exploring network size, children’s ideas 

were mapped according to the time at which they appeared in order to show when 

and where new ideas were introduced, whether these were related to previous 

concepts under discussion or whether these new ideas appeared to exist in isolation. 

It is proposed that such analysis may help to inform on how concepts change or 

develop over time. An example of a timeline analysis is shown in Figure 22. 
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Figure 21: The storyboarding approach to investigating children’s ideas within the context of each science activity.
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Figure 22: A basic timeline analysis for the development of new ideas as generated 

for the electricity results drawn from Research Phase 2. 

According to this timeline analysis Child 1 generates the first idea at the beginning of 

the activity, this is then added to by Child 2 who proposes another idea but relates 

this to the first one. Child 4 adds to the timeline by proposing another new idea that 

is also related by Child 4 to Idea 1 and Idea 2 and so on. It is important to note here 

that whilst there appears to be blocks of time where no new information is added to 

the timeline (e.g. between 16:00 – 30:00 minutes). These gaps occur because the 

children continue to use the same network of concepts highlighted in the preceding 

timeframe. Importantly, this form of mapping permits the reduction of data to the 

essential components, e.g. which ideas are introduced, at which point during the 

activity they occurred and how new ideas were related to those already discussed. 

Looking at the timeline analysis it is clear that this is reminiscent of the conceptual 

structures proposed in Chapter 3 (Figures 10, 11 and 12) where previous research 

had aimed to show the relationships between children’s ideas as they changed in 

light of tuition. Such an exploration was of pivotal importance to this work and this 
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method of mapping facilitated the researcher to pinpoint possible points of 

conceptual change, development or growth whilst remaining mindful of the activities 

that the children were undertaken at each point in time. However, this mapping of 

concepts was extremely time consuming and this had restricted the application 

within the current work. In order to highlight the utility of this approach for capturing 

such data one timeline analysis has been conducted for each of the science topics 

(one for electricity and one for floating and sinking).   

 

 5.5 Discussion 

In this chapter the multimodal, task-based approach to studying children’s ideas has 

been discussed in detail. It was highlighted how this approach had been developed 

from the work contained in Chapter 4. The importance of studying gesture has been 

revealed by using the analysis of the pilot study data drawn from Research Phase 1 

(Chapter 4). These analyses showed that children’s gestures in science could be 

attributed to five categories, each of which had an important role in permitting the 

researcher to understand children’s ideas, and it was also shown that on some 

occasions these gestures contained details of children’s ideas that were not evident 

in their verbal discussions. Furthermore, the analysis of gesture also showed that it 

was possible to use these in order to explore some of the social aspects of learning 

and the way that children used gestures and non-verbal responses in order to elicit 

help from each other.  

The results of Research Phase 1 helped to illustrate the value of using the 

multimodal approach and provided a framework for transcription that was adopted 

during Research Phase 2 and 3.  This transcription framework included additional 

columns of data that captured the different types of responses (e.g. gestures and 

other non-verbal behaviour) in order to show how these were used by the children 

during the activities. Whilst the pilot studies were important for developing 

transcription procedures they also highlighted the potential utility of using the NVivo 

9 research software in order to code the large corpus of data generated by Research 

Phase 2. Importantly, the results of the pilot studies also highlighted that it was 

important to develop an analytical framework specifically for capturing all of the 

levels of detail generated by the different response types (e.g. verbal response and 
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gesture). This chapter introduced the development of such an analytical approach 

which facilitated the direct comparison of these responses using a storyboarding 

technique. The storyboarding approach provided a visual mapping of children’s ideas 

as they developed throughout a single activity and it also permitted effective data 

reduction. Finally, this chapter also included details of the development of a timeline 

analysis approach to exploring the development of children’s ideas during the 

practical science activity. The aim of this form of analysis was to track how ideas 

were related to each other and to pinpoint points of change should they arise. In the 

following two chapters this thesis will explore the results of the Research Phase 2 

which probed and challenged children’s ideas for electricity and floating and sinking. 
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Chapter 6  Children’s Ideas about Electricity: a Multimodal Perspective 

 

 

 6.1  Introduction 
 

 

In this chapter the analyses of and the findings from the electricity activities are 

presented and discussed. The results are structured according to both ‘conventional’ 

approaches to studying children’s ideas and the new multimodal, task-based 

approach.  

In the first part of the chapter the analyses explore the content of the children’s 

drawings and written and verbal responses during interview. These are analysed 

using a ‘conventional’ approach. In all cases content analyses were undertaken on 

the children’s individual worksheets (as discussed in Chapter 4) and the group 

transcripts drawn from the electricity practical activities.  These examinations of the 

underlying frameworks of understanding that the children were using when 

discussing their ideas and structured around: 

• completing a simple circuit diagram showing how a bulb lights; 

• describing what electricity is; 

• considering the properties of materials that conduct electricity.  

In the second part of this chapter, different aspects of the multimodal analyses are 

presented. Following transcription, the data were coded using NVivo in order to 

complete the multimodal analysis. NVivo offered a particularly powerful platform for 

this analysis by drawing together the transcripts from multiple cases and making it 

possible to trace coding across and within transcripts as discussed in Chapter 5. 

This more detailed level of analysis permitted the identification of the different types 

of gestures that children used as well as indicating the prevalence of these across 

the three age groups. In order to explore the utility of the storyboarding approach 

detailed in Chapter 5, three group studies were conducted. Each group study was 
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transcribed in full and the comparative analysis between the different response types 

was completed by hand rather than through the use of NVivo. These storyboard 

analyses explored the ways that the children used different response types (e.g. 

drawings, written, verbal and gestures) in order to show their understanding during 

the activities and the way that the children’s ideas changed (if at all) during the 

course of the activities. Finally, in order to show how ideas developed during a single 

activity a timeline analysis was completed for one of the Year 9 groups. This groups’ 

data were transcribed fully and coded by hand in order to capture the transition 

between the concepts that children were discussing during the activities. Finally in 

this chapter, the results of the activities are compared to previous research and the 

importance of studying gesture is assessed using the data collected during Research 

Phase 2. 

As highlighted in Chapter 3, electricity is well studied in the research literature and is 

also embedded within the National Curriculum for Key Stages 1- 4, the materials 

taught appearing in Physical Processes but also overlapping with Materials and 

Their Properties in Key Stage 2 and above (DfEE & QCA, 1999). According to the 

guidance: 

• Key Stage 1 – pupils are taught that everyday objects use electricity, simple 

circuits using batteries, bulbs and wires and the effect that a switch can have; 

• Key Stage 2 – pupils are taught that some materials conduct electricity, how 

to construct series circuits (including how changing components influences 

the circuit e.g. brightness of the bulb), how to represent circuits in drawings 

using the symbols for electrical components; 

• Key Stage 3 – pupils are taught that electrical current in circuits can produce a 

variety of effects, the particle model is introduced and pupils receive tuition in 

series and parallel circuits including the concepts of current and voltage; 

• Key Stage 4 – pupils are taught that electrical power is readily transferred and 

controlled and can be used in a range of situations. 
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In National Curriculum terms, children’s learning is measured according to 

Attainment Targets which consist of 8 level descriptors of increasing difficulty, plus a 

description of what exceptional performance would be. The attainment levels for 

each topic are available from the Department for Education. According to the DfEE 

and QCA (1999), children are expected to attain the following levels at the following 

ages (Table 13): 

 

Range of levels within which the great 
majority of pupils are expected to work 

Expected attainment for the majority of 
pupils at the end of the Key Stage 

Key Stage 1 1-3 At age 7   2 

Key Stage 2 2-5 At age 11   4 

Key Stage 3 3-7 At age 14 5/6 

Key Stage 4 National qualifications are the means of assessing attainment 

Table 13: The range of levels children are expected to work within and the expected 
attainment for the majority of pupils at the end of the Key Stages. 

 

The presence of Electricity in the curriculum highlights that all of the children 

involved in this study will have received some form of tuition prior to undertaking the 

activities here. 

 

 6.2  Traditional Approach to Analysing Children’s Ideas 
 

As detailed in Chapter 4, the following participants were recruited for the electricity 

activities undertaken as part of Research Phase 2: 

 

• 19 children in Year 2 at Village Primary School; 

• 15 children in Year 2 at City Independent School; 

• 28 children in Year 6 at Village Primary School; 

• 16 children in Year 6 at City Independent School; 

• 15 children in Year 9 at Village Secondary School. 
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The children completed the electricity activities as detailed in Chapter 4, section 4.6. 

In summary these activities entailed the children first taking part in a baseline test for 

their ideas about electricity. This included a discussion of what they thought 

electricity is, and drawing and sentence completion tasks. The children then moved 

on to build simple, series and parallel circuits during which time their ideas were 

continually probed. They also discussed how electricity is measured. This was 

followed by a problem solving activity where the children were asked to group 

materials (including cork, plastic, metals such as copper and steel and different types 

of wood) according to whether or not they thought that they would conduct electricity, 

to develop an effective means of testing the materials, and then discuss their results. 

Children’s existing ideas were challenged using an analogy with chocolate smarties 

to represent electrons moving in a circuit. The story of Alessandro Volta’s invention 

of the battery was also discussed before the children took part in a final probe of 

their ideas. The researcher led all activities by way of the dialogic teaching method 

which probed the children’s ideas and provided tuition using the analogy. Throughout 

the activities the researcher used a participant observation approach in order to 

judge the appropriate time to ask specific questions and in order to assess when the 

activities should be moved on. 

 

In order to explore the way that the children’s ideas changed between the three age 

groups of children, a comparison of the features of children’s drawings was 

undertaken. This was followed by an analysis of the content of their written work and 

an analysis of the content of their verbal responses.  

 

6.2.1  Children’s Drawings 
 

In order to explore the children’s understanding of electrical circuits, all participants 

were asked to complete a simple circuit diagram. As in the pilot studies, in order to 

decide which children should be given the worksheet containing the abstract 

electrical symbols and which children should be given pictorial representations of the 

battery and bulb they were first asked if they could identify the symbols that are used 

when normally discussing electricity. Worksheets were allocated accordingly. In all 

cases the Year 2 children completed the circuit diagram on the worksheet which 
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contained pictures as none of these children could reliably identify the symbols. The 

two worksheets were relatively evenly distributed in the Year 6 groups and all of the 

Year 9 children completed the worksheet with symbols. All children were asked to 

sketch in the connecting wires in order to ‘make the bulb light’. A qualitative content 

analysis of children’s circuit completion drawings was conducted in order to explore 

how these varied between the age groups. In all cases and across all age groups the 

children successfully completed the circuit diagrams (see Figure 23). However, not 

all drawings of a complete circuit were accurate and 15% (N = 5) of the Year 2 

children placed the wires inappropriately (e.g. not connected to the poles of the 

battery).  

 

Figure 23: Typical circuit drawings as completed by the three age groups 

investigated in this project. 

 

The drawings themselves revealed a number of different styles and these showed 

variation across the age groups. The younger children (Year 2) had a tendency to 

sketch bulb and battery holders into their drawings; they also frequently tried to draw 

3D representations of the wires. The Year 6 children sketched wires using straight 

single lines in accordance with the symbols used to represent electrical components 

even though many of these children completed the worksheet containing the battery 

and bulb pictures. Interestingly in this age group the children frequently included 

switches in their diagrams, of the children who did this 5 sketched in the appropriate 

symbol for a switch whilst the other 5 drew in a switch that was located in the closed 
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position. When probed about this, the children answered that the switch was 

important because it enabled them to turn the light off and on; however, they all 

agreed that a switch did not have to be in the circuit in order to make the bulb light. 

The Year 9 children represented the wires in a rectilinear circuit in accordance with 

the abstract symbols used for electrical components. In this age group only one child 

included an additional symbol and this was inconsistent with the symbols that are 

typically used to represent electrical components (Figure 23). The drawings shown in 

Figure 23 are all scientifically correct, however, they appear to move from a concrete 

representation, where children draw exactly what they see to an abstract 

representation, where the children produce drawings using the accepted circuit 

diagram conventions.  The content of the children’s drawings is summarised in Table 

14.  

Table 14: The distribution of different aspects of children’s circuit drawings across 

the three different age groups of participants. (* Some children from this age group 

did not complete the drawing task.) 

 

As shown no children who participated in the activities drew an incomplete circuit, 

this was expected as prior to participation all children had had some form of tuition in 

electricity. The features of the circuits drawn became more scientific as the age of 

the participants increased and none of the Year 9 children produced drawing which 

Age Incomplete 
Circuit 

Complete Circuit Complete Circuit with 
Additional Features 

 Only one 
wire drawn or 
wires not 
connected to 
the battery 
 

Wires 
inappropriately 
placed (e.g. 
wires not 
touching the 
positive or 
negative poles 
of the battery) 

Wires 
appropriately 
placed (e.g. 
wires touching 
both battery 
poles) 
 

With a switch 
drawn in the 
closed position 
or with other 
components 
(e.g. motor) 
 

With a 
switch 
drawn using 
the accepted 
symbol 
 
 
 
 

Year 2 
(N = 34) 

 5 (15%) 27 (79%) 2 (6%)  

Year 6 
(N = 
31*) 

  21 (68%) 5 (16%) 5 (16%) 

Year 9 
(N = 15) 

  14 (93%)  1 (7%) 
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contained inaccuracies such as the wires not being appropriately places of the 

switch being drawn in the closed position. 

 

6.2.2 Children’s Written Responses 
 

Following the drawing exercise, children were asked to individually complete a 

sentence to explain why the bulb in their drawing would light. Qualitative content 

analyses of the written responses generated by the children across the three age 

groups were used in order to generate a framework system of ideas. Notably, only 

16 (47%) of the younger children were able to complete the written response to the 

task. Outcomes are presented in Figure 24. A range of ideas were uncovered for 

why children thought that the bulb would light, these included, because there is a 

battery, the wire has electricity in it and battery power goes into the wires and causes 

it to light. Interestingly, the majority of the responses produced by the children in this 

age group discussed specific elements of the circuit rather than the role of the circuit 

in its entirety. 

 

Figure 24: The different written explanations that Year 2 children (7 years of age) 

gave for why the bulb lights (16 from 34). 
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It is proposed that responses such as the bulb lights because “the metal bit touch”, 

provides a good example of a concrete concept where the children are using directly 

observable phenomena in order to explain the results. In contrast responses such as 

“battery power goes into the wires and cause it [the bulb] to light” provide examples 

of concepts that are more abstract, the child cannot directly see the power pass from 

the battery to the wires but they do appreciate that this is what makes the bulb light. 

Ideas in this age group appear to be much more intuitive rather than scientific 

although there is some evidence of an appreciation of scientific qualities. 

Similarly, only 19 children (43%) in Year 6 gave written responses when asked why 

the bulb lights. Figure 25 presents an overview of the reasons given. These included, 

because the circuit is complete, the battery sends power to the bulb and electricity 

from the battery is carried by the wire. Written comments in this age group revealed 

that children had begun to focus more on the interactions within the circuit as whole 

and these were given greater importance. However, some children still focused on 

single features of the circuit rather than the whole. 
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Figure 25: The different written explanations that Year 6 children (11 years of age) 

gave for why the bulb lights (19 from 44). 

 

As before there was evidence of some concrete examples being used in the Year 6 

children’s written responses, these included “the circuit is complete” and “wires 

connect batteries to the bulb”. These examples appear to show that even in Year 6 

some children still focus on the directly observable features of the circuit rather than 

what may be happening inside of it. In contrast, there was also evidence of abstract 

concepts such as “power (electricity) travels through the wires then reaches the bulb” 

and “battery power passes round the circuit”. In both of these examples the children 

appear to be drawing on ideas that are not readily observable in electricity tasks. As 

with the Year 2 children, there is mixed evidence of both intuitive and developing 

scientific ideas in the Year 6 children’s responses. For example, some children state 

that the battery sends power to the bulb but they do not appear to be aware of how 

this happens, in contrast another child states that the complete circuit conducts 

electricity. The idea of conductivity represents a more scientific concept and shows 

how these older children’s ideas are beginning to correspond more closely with 

tutored concepts of electricity. 
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All 15 (100%) of the children in Year 9 provided a written response to the sentence 

completion task. Typical responses at this age included battery power travelling 

through the wire to power the bulb, the wires connect to the bulb, and energy from 

the battery is sent through the wires to the bulb. Figure 26 presents an overview of 

all responses provided. The majority of children in this age group focused their 

written comments on the circuit as a whole interacting system and only 3 children 

now focused on small components in the circuit (e.g. the wires connecting to the 

bulb). As with the younger children there was still some evidence of concrete 

concepts being discussed such as “the wires connect to the bulb”, this showed that 

even in Year 9 some children were still relying on directly observable features of the 

circuit in order to support their ideas. There was however, also evidence of some 

abstract concepts. For example, one child stated that the bulb lights because 

“electrical current can pass through the bulb and get back to the battery”. This 

particular response represented a good example of an abstract concept which 

showed the child’s awareness of factors that were not directly observable. In terms 

of types of concepts as with the other children there was evidence of both intuitive 

and scientific concepts. One example of an intuitive concept was “the wires connect 

to the bulb”. This concept appears intuitive because it only acknowledges surface 

details such as the connections of the different elements in the circuit. An example of 

a more scientific concept can be drawn from the child who states “electrical current 

can pass through the bulb and get back to the battery”. This statement 

acknowledges the requirement for all parts of the circuit to be connected and also 

acknowledges that the current continues around the circuit after it has passed 

through the battery.  
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Figure 26: The different written explanations that Year 9 children (11 years of age) 

gave for why the bulb lights (15 from 15). 

Overall, the results of the analysis of the written responses revealed that the older 

children were more able or confident in writing their ideas about why the bulb lights. 

This may have occurred because the writing competencies of the children or 

because the younger children found it more difficult to express their ideas in this 

way. As anticipated the older children used more scientific concepts in their 

discussions, and in fact the written responses reveal the slow transition between 

intuitive and scientific concepts and the transition between children thinking in 

concrete terms (e.g. based on what they can observe) to thinking in abstract terms 

(e.g. where the children appreciate aspects that are not readily observable). These 

results suggest that over time and with greater exposure to learning opportunities 

about electricity the children’s ideas evolve to become more like the scientific 

explanations, however, even the oldest children still do not have a full understanding 

about what electricity is and they still used concrete concepts at times.  

 

6.2.3 Children’s Verbal Responses 
 

In order to explore children’s ideas further during the interviews their verbal 

responses to the following questions were recorded for analysis: 
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• What do you think electricity is? 

• What do you think is happening in the circuit in order to make the bulb light? 

• What do you think would happen when different electrical components were 

added to a circuit? 

In the first instance a thematic analysis for the terms used to describe electricity was 

undertaken. The results of this analysis revealed that in the younger children (Year 

2) electricity was almost always viewed as a form of power. By Year 6, some 

children still referred to electricity as a form of power but others began to talk about 

electricity as a form of energy. In addition some children discussed ideas of flow and 

atoms. The Year 9 children stated that electricity was a source of power or energy 

but in addition, at this age, the notion of current was prominent in some children (see 

Table 15). Overall it can be suggested that the themes present in the youngest 

children’s verbal responses represent concrete concepts, e.g. that electricity makes 

things work. This effect of electricity is directly observable and the idea that electricity 

is a form of power is intuitive. There is evidence of ideas becoming more abstract in 

some of the Year 6 children’s response and these include themes such as “electricity 

is something to do with atoms”, although it can be difficult to pin down exactly what 

the children understand by this, such responses reflect a clear shift in thinking from 

concrete concepts to those that are more abstract and not directly observable. 

Similarly, the Year 9 children show a further move towards more scientific and 

abstract concepts and 4 children (27%) discuss the notion of electrical current during 

the baseline assessment.  

 
What is electricity? 
Themes 

 
Year 2 
 (N = 34) 

 
Year 6 
 (N = 44) 

 
Year 9 
(N = 15) 

Makes things work 8 (24%) 10 (23%)  
A form of power 19 (56%) 19 (43%)  
Source of power 7 (20%)  4 (27%) 
Atoms  5 (11%)  
Is energy  10 (23%) 3 (20%) 
Power and Energy   4 (27%) 
Current that powers 
things 

  4 (27%) 

Flow of electrons    
Table 15: Themes drawn from children’s discussions of what electricity is. 
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Verbal responses to the probes for what the children thought would happen when 

different components were added to the circuit and why they thought this would 

happen were coded according to the frameworks of understanding for electrical 

circuit discussed in the work of Borges and Gilbert (1999). It is important here to note 

that Borges and Gilbert worked with professionals and based this initial framework 

on the previous research identified in Chapter 3. Borges and Gilbert’s outcome 

categories are presented as shown (Table 16). Looking at these categories it is clear 

that ideas allocated to category one would contain the most intuitive and least 

scientific concepts, whilst category 7 would contain the most scientific. Importantly, 

Borges and Gilbert (1999) added to the scientific model (category 7) in their work, 

these additional categories were not required in this work as the participants were 

significantly younger and had less experience of working with electricity. 

The results for the frameworks that children held across the different age groups are 

shown in table 17.  Interestingly these results also demonstrate a clear 

developmental shift in the frameworks held with older participants demonstrating the 

more scientific models. None of the children held non-relevant or non-scientific 

models, this may have occurred because at the time that the research was 

undertaken all of the children had received some form of tuition in electricity 

concepts.  

 

 Primary Framework 
 

Category 

In
tu

itiv
e
 --------------------�

 S
c
ie

n
tific

 

Non-Relevant and Non-Scientific  
No relevant properties are mentioned or the responses are not 
relevant to electricity 

1 

Unipolar Model 
There is a flow of electricity from the battery to the bulb; the 
electricity is all used up by the bulb. The second wire is not 
necessary / seen as required to light the bulb but plays no active 
role in the circuit. 

2 

Two-Component / Clashing Currents Model 
‘Plus’ and ‘minus’ currents travel from the battery terminals to the 
bulb where they meet and produce energy 

3 

Closed Circuit Model 
All the circuit elements have two connections, current circulates 
around the circuit in a given directions and the circuit only 
functions when the switch is closed. The model recognises the 

4 
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bipolarity of circuit elements but it suggests that the current is not 
conserved. Lack of differentiation between current and energy 

Current Consumption / Sequence Model 
Current is described through a series events, current is 
consumed as it goes through the circuit components, though a 
fraction of it returns to the other end of the battery 

5 

Constant Current Source / Sharing Model 
The battery is seen as a source of constant current, e.g. the 
current supplied is always the same regardless of the circuit 
features. It is recognised that the battery wears out with time. 
According to this model, two bulbs share the current whether 
they are connected in series or parallel 

6 

Ohm’s / Scientific Model 
A current flows around the circuit transmitting energy, current is 
conserved and differentiated from energy. Circuit is seen as an 
interacting system and a change at one point in the circuit affects 
the entire system 

7 

Table 16: The frameworks identified by Borges and Gilbert (1999). 

The clashing currents model was the most predominant framework that the Year 2 

children held at the beginning of the activity, whilst the closed circuit model was most 

predominant in both the Year 6 and Year 9 children. These results appear to match 

the experiences of the children and it could be suggested that models 5, 6 and 7 are 

all more advanced than would be anticipated for these ages of the children. 

Typically, these results appear to similar to those produced by the previous research 

into children’s ideas about electricity as detailed in Chapter 3. 

 

 
 

 
Category 
 

 
Year 2 
(N = 34) 

 
Year 6 
(N = 44) 

 
Year 9 
(N = 15) 

In
tu

itiv
e

  ---------------------------------
-------------->

 S
c
ie

n
tific

 

1  
Non-relevant and 
Non-Scientific 
 

   

2 
Unipolar Model 
 
 

4  
(12%) 

5  
(11%) 

 

3 
Two-Component / 
Clashing Currents 
Model 

21  
(62%) 

  

4 
Closed Circuit 

9  
(26%) 

39  
(89%) 

15  
(100%) 
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Model 
 
5 
Current 
Consumption / 
Sequence Model 
 

   

6 
Constant Current 
Source / Sharing 
Model 

   

7  
Ohm’s / Scientific 
Model 
 

   

Table 17: The frameworks of understanding for what happens in a circuit applied by 

the three age groups (Year 2, Year 6 and Year 9) measured at beginning of the 

activity. 

In order to further explore children’s ideas about electricity all children took part in 

problem solving activities, during this activity they were asked to sort a range of 

materials according to whether they thought that they would conduct electricity and 

then design and implement an appropriate approach to testing the materials (see 

Chapter 4 for further details). A qualitative, cross-age comparison of children’s 

understanding of electrical conductivity was undertaken.  This comparison utilised 

evidence drawn from both the accuracy with which the children categorised materials 

according to whether they would conduct electricity and children’s discussions of the 

factors that they believed influence a material’s ability to conduct electricity.  The 

results suggested that children’s ideas used to explain the conductivity of materials 

does become more scientific over time as children become older.  Measures 

revealed a high degree of accuracy for predicting conductivity was evident across all 

three age groups. All groups correctly identified that metal objects typically conduct 

electricity.  However, there were some significant inconsistencies. Many Year 2 and 

6 children thought that a glass marble would conduct electricity. No Year 9 children 

predicted this outcome.  Children in Years 2 and 6 often thought that a transparent 

disk of plastic would conduct electricity. This never occurred in the Year 9 children.  

In addition, many Year 2 and 6 children thought that a two-pence coin would not 

conduct electricity, whilst children in Year 9 frequently cited this material as a good 

conductor because it was the same material that wires were made of. Preliminary 
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analysis of the reasons why children thought some materials conduct electricity 

revealed that at Year 2 children frequently stated for example, ‘metal things always 

let electricity pass through’. In addition, they explained that the glass marble and the 

transparent plastic disk would let electricity through because they were able to see 

through it. When probed children were unable to suggest any reasons why this 

occurs.  By Year 6, children’s responses revealed an evolving conception suggesting 

that some thought conductivity had something to do with what the material was like 

inside, but when probed they remained uncertain as to why this might be.  The Year 

9 children, whilst including all of the explanations given by the other age groups, 

suggested that conductivity might also be linked to the way in which particles were 

arranged in objects.  

6.2.4 A Comparison between Children’s Drawings, Written and 

Verbal Responses 
 

A comparison between the drawings, verbal and written responses for the children 

was conducted. This revealed that all children were able to produce an accurate 

representation of circuit in their drawings; however, their verbal and written 

responses revealed a wide range of different ideas about electricity. This suggests 

that although it was relatively easy for children to produce such drawings with a high 

degree of accuracy such tasks do not accurately reveal their underlying ideas for 

what electricity is or how it works in isolation. A comparison between the verbal 

responses that children generated when asked why the bulb in a circuit lights 

revealed that for the younger children (Year 2) there was a disparity between the 

content of their verbal responses and the content of what they had written if they had 

written anything at all. The Year 2 children always produced accurate drawings, 

frequently provided detailed and well developed verbal responses even though they 

had been unable to do so in writing. Notably in their verbal responses the children 

frequently discussed all of the different components in the circuit and their 

importance in order for the bulb to light. A similar effect was evident in the Year 6 

children who were also able to complete circuit diagrams more abstractly but often 

failed to respond to the written probe. However, by this age the written responses 

that were provided more frequently contained a more detailed description of the 

need for a complete circuit in order to make the bulb light and the different 
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components that are important in order to make the circuit work. Interestingly, 

although by this age children often added components such as switches into their 

drawings these additional components never appeared in their written responses. 

Year 9 children had the most advanced drawings and always presented a written 

response to the probe on the worksheet. Furthermore these responses were often 

more detailed and almost always indicated the necessity for a complete circuit as 

was evident in their verbal responses. Interestingly, by this age some children 

discussed the role that electrons play in an electrical circuit but this term never 

appeared in their written responses.  

Overall the results of the traditional approach to exploring children’s ideas revealed 

that the frameworks that children become more scientific as they get older, the 

content of drawings become more abstract over time and uses less concrete pictures 

in order to represent elements of a circuit. As children become older, and perhaps 

more confident in writing, they are more likely to produce more advance written 

responses to probes and the children’s verbal response also become more well 

developed and scientific overtime. These results are consistent with the previous 

findings of Shipstone (1985), Osborne, et al. (1991) and Borges and Gilbert (1999) 

(detailed in Chapter 3). 

6.3 Changing Children’s Ideas 
 

As the electricity activity included a conceptual challenge element, the demonstration 

of the movement of electrons in a circuit, a thematic analysis was conducted for the 

children’s ideas of what electricity is at the end of the activity and the overall 

frameworks that they had applied. The results revealed that the younger children 

remained fairly consistent in their discussions; there was little evidence of additional 

or new ideas being incorporated when they stated what they thought electricity is 

(see Table 18). Strikingly however, the Year 6 and Year 9 children had begun to 

incorporate the term ‘electrons’ into their ideas about what electricity is (20 in Year 6 

and 8 in Year). These children had not previously referred to electrons in their 

discussions (see table 18). The results presented support the notion that the children 

were making progress in their ideas after participating in the activities. 
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What is electricity? 
Themes 

 
Year 2 
 (N = 34) 

 
Year 6 
 (N = 44) 

 
Year 9 
(N = 15) 

 Before After Before After Before After 
Makes things work 8 (24%) 12 

(35%) 
10 
(23%) 

   

A form of power 19 
(56%) 

15 
(45%) 

19 
(43%) 

   

Source of power 7 (20%) 7 (20%)   4 (27%) 4 (27%) 
Atoms   5 (11%)    
Is energy   10 

(23%) 
 3 (20%) 3 (20%) 

Power and Energy    24 
(55%) 

4 (27%)  

Current that powers 
things 

    4 (27%)  

Flow of electrons    20 
(45%) 

 8 (53%) 

Table 18: The themes drawn from the children’s verbal responses to what electricity 

is at the beginning and the end of the activities.  

 

When exploring these changes in more depth it was also evident that a large number 

of the Year 6 children had begun to use the word energy into their discussions, this 

term had also not been evident at the beginning of the activity. These results appear 

to support the view that the structure of the practical science activity was useful for 

challenging children’s ideas, particularly when they were older. However, it is 

important to consider that a study such as this one does not permit the researcher to 

explore whether the revisions in ideas were the result of a long term change in 

conceptual structure or an immediate reference to a relevant feature that may be 

later forgotten. In order to further explore any possible changes in the children’s 

ideas about electricity the framework analysis was again completed using the 

evidence drawn from the entirety of the activities, e.g. what children thought 

electricity was, what they thought would happen when circuits were changed, what 

they thought would happen in a parallel circuit, ideas about conductivity and ideas at 

the end of the session following conceptual challenge. The results of this comparison 

are presented in table 19.  
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Category 
 

 
Year 2 
(N = 34) 

 
Year 2  
(N = 34) 

 
Year 6 
(N = 44) 

 
Year 6 
(N = 44) 

 
Year 9 
(N = 15) 

 
Year 9  
(N = 15) 

  Before After Before After Before After 

In
tu

itiv
e
  ----------------------------------->

 S
c
ie

n
tific

 

1  
Non-relevant 
and Non-
Scientific 
 

      

2 
Unipolar Model 
 
 

4  
(12%) 

1  
(3%) 

5  
(11%) 

   

3 
Two-
Component / 
Clashing 
Currents Model 

21  
(62%) 

21  
(62%) 

 1  
(2%) 

  

4 
Closed Circuit 
Model 
 

9  
(26%) 

 39  
(89%) 

 15 
(100%) 

 

5 
Current 
Consumption / 
Sequence 
Model 

 9  
(26%) 

   4  
(27%) 

6 
Constant 
Current Source / 
Sharing Model 

 3  
(9%) 

 42  
(96%) 

 8  
(53%) 

7  
Ohm’s / 
Scientific Model 
 

   1  
(2%) 

 3  
(20%) 

Table 19: The frameworks of understanding for what happens in a circuit applied by 

the three age groups (Year 2, Year 6 and Year 9) measured at beginning and the 

end of the activities. 

 

These results revealed that many of the children had changed the frameworks that 

they were applying when discussing electricity. As with the theme analysis the most 

significant changes appeared in the Year 6 Year 9 children, with their ideas 

appearing to develop into more scientific conceptions as the activities progressed. 

However, it is important to note that many of the changes in the frameworks used did 

appear after the children added bulbs to their series circuits. This finding supports 

the view that it is extremely difficult to allocate children to specific frameworks as 
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their ideas do appear to change and evolve with the task demands. Notably, with the 

additional bulb more Year 2 children use the more advanced scientific models in 

their explanations, e.g. 9 (26%) children now applied the sequence model whereby 

the current is consumed as it goes through the different components of the circuit. 

Similar results were evident for the Year 6 children with 42 (96%) now applying the 

sharing model. Finally, it was only through adding the additional bulbs to the circuit 

that there was evidence of the oldest children (Year 9) using the most scientific 

models.  

Overall, however, there is evidence that by using a conceptual challenge approach 

such as detailed in these activities it is possible to change the ideas that children 

have particularly if they are older. These changes do appear to take place on two 

distinct levels, for the older children the changes are at theme level and the children 

are more likely to incorporate the more advanced concepts in their later discussions. 

Changes also appear to occur at framework level, with all children, but perhaps more 

significantly the older children, showing evidence of changes at theory level. 

Importantly, it can be suggested that whilst it is easy for children to produce circuit 

diagrams that are scientifically accurate this actually tells the researcher little about 

their underlying understanding of electricity. The depth of probing and the range of 

activities used in the sessions discussed here however, did reveal that children do 

not apply their ideas about electricity consistently, they do instead apply them based 

on the task demands and can move between frameworks of understanding 

accordingly. This makes it extremely difficult to state with certainty what frameworks 

the children actually do hold and if they have learned from a specific incident unless 

the probes are thorough enough to pick up all aspects of the children’s knowledge. 

 

The results of the traditional analyses of the children ideas appear to demonstrate 

that children’s ideas for electricity do become more scientific over time and between 

the three age groups with the oldest children demonstrating evidence of the most 

scientific models. For example, the oldest children produced drawings that took the 

form of the circuit diagrams that could be found in text books whilst the youngest 

children attempted to represent the 3 dimensional shapes that the circuit 

components held. In the children verbal and written work the Year 9 children 

demonstrated awareness that electricity is a form of energy that powers things or 
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describing it as a current. The Year 6 children discuss electricity in wide range of 

different ways including stating that it is form of power or that it is energy. The 

youngest children (Year 2) tended to state that electricity is a form of power that 

makes things work.  

 

The analysis exploring whether it was possible to change (or begin to change) 

children’s ideas through the conceptual challenge aspect of the methodology 

showed that the youngest children failed to respond to these prompts event though 

they showed evidence that they were able to understand what electrons were during 

the role play, the Year 6 children did show evidence of changing conceptions and 

begin to incorporate terms such as energy and electrons into their descriptions of 

what electricity is. Finally, the Year 9 children also demonstrated evidence of 

changing ideas and incorporated the term electrons into their final discussions.  

  

 

6.4 New Approaches to Studying Children’s Ideas about Electricity – 

Multimodal Group Studies 

 

In order to explore what the multimodal analysis of data can add to the discussions 

and debates regarding the processes that support conceptual change three groups 

were purposively sampled from the entire corpus of audio / video data. One group 

was selected from each age studied and groups were sampled according to whether 

the participants used gestures within their discussion. As almost all of the children 

gestured at some point during the activities, sample groups were drawn from those 

where the gestures appeared to perform an important role in the children’s 

discussions (e.g. gestures were used to support, complete or elaborate on verbal 

explanations when the children were talking). In order to gain a balanced view, these 

group studies included examples where changes were evident following the 

challenge of children’s ideas, examples where no change was evident and examples 

where the activities did not progress as anticipated. It is proposed that by taking this 

approach the analyses presented here are particularly representative of typical 

classroom activities where there may be great levels of variability in the outcomes 
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that result from teaching and the other factors that can impact on learning. A total of 

three group studies for electricity were produced: Year 2, Year 6, and Year 9. 

In all instances the group studies chosen for further analysis were transcribed fully. 

In order to reduce the data to a manageable level a storyboard was produced for 

each group, these storyboards captured key events within the activities, important 

ideas and discussions that the children had and the frameworks of understanding for 

the electricity that were evident at the beginning and end of the activity. The 

storyboard was also used to highlight ‘critical moments’ where the discussions 

between the participants appeared to have an impact on the children’s learning or 

where the different modes of communication played an important role in either 

communicating children’s ideas or where there was contrast between the content of 

both modes. The critical moments identified during the storyboard analysis were 

subjected to transcription across three conditions; sound only, image only, sound 

and image together. However, firstly in order to explore the importance of gesture 

this section explores the prevalence and types of gestures that the children 

produced. 

 

6.4.1 Children’s Gestures for Electricity 
 

The gestures that the three age groups of children produced when discussing their 

ideas for electricity were also analysed. As this analysis required an additional level 

of detail the baseline and end of activity probes of all of the group activities were 

transcribed and analysed and the full content of the three group studies (discussed 

later in section 6.4) were used. The results revealed that the children did use the five 

categories of gesture proposed in Chapter 5: 

• referential; 

• representational; 

• expressive; 

• thinking;  

• social. 



208 
 

 

The prevalence of these categories of gesture is show in table 20. The analysis 

revealed that within the context of the electricity activity referential and 

representational gestures were used the most frequently across all of the age groups 

of the children. However, there was also evidence of expressive, thinking and social 

gestures occurring within the context of these activities even though these gestures 

occurred less frequently. 

 Types of 

Gesture 

Referential Representational Expressive Thinking Social Total 

Year 2 38 33 6 8 15 102 

Year 6 21 48 18 4 31 122 

Year 9  23 15 4 5 15 62 

Table 20: The frequency of occurrence for the different types of gestures across the 
three ages groups of children.  

 
When exploring the differences between the age groups it appeared that the Year 2 

children used the most referential gestures in their discussion, frequently these 

included pointing to objects rather than naming them. The same age group also used 

representational gestures frequently, these tended to be when the children used their 

hands to act out or represent objects or actions. Such use of representational 

gestures may have occurred because of the complexity of the language required to 

explain some aspects of their understanding of electricity.  The Year 6 children used 

representational gestures more frequently than any other age group and any other 

form of gesture. As with the Year 2 children these gestures often comprised of the 

children using their hands to represent objects or actions. This age group also 

appeared to use social gestures more frequently, and although this may have been a 

feature specific to this group of children the social gestures were often used in order 

to offer to support to each other. Finally, the Year 9 children most frequently used 

referential gestures, including pointing. As with the Year 2 children, these gestures 

often referred to objects that the children did not name.  

In order to highlight how the gestures were used the following analysis provides 

some examples of typically occurring gestures that children used when talking about 
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electricity. Overall, the children frequently used referential gestures to refer to 

various components both within the drawings that they had completed and within the 

circuits that they had made and sometimes they used other objects to make these 

gestures. In our first example, Liam, a Year 9 boy, used a referential gesture in order 

to show the symbol for a bulb on his drawing (image 1, Figure 27).  

 

Time Person Verbal Report Gesture 
03:27 RS Okay, so can I ask you then, what 

do you think is actually happening 
in that circuit to make the bulb 
light? 

 

 Liam The energy from the battery is 
being passed through the wires to 
the light which makes it light up. 

As he speaks Liam 
bounces the pencil 
between his thumb and 
index finger, when he 
says light he points to 
the symbol for bulb that 
is on his paper and 
then continues to 
bounce the pencil 
between his thumb and 
index finger again. 

Table 21: Extract from a Year 9 transcript which shows Liam using a referential 

gesture to point to the symbol for bulb in his drawing in order to support his 

discussion of what happens in a circuit in order to make a bulb light (RS = 

researcher). 

 

Examples of such referential gestures were consistent across all three age groups. 

Similarly, there was a high prevalence for representational gestures.  These 

representational gestures often consisted of drawing paths which represented the 

movement of electricity in circuits. In one example two Year 6 participants, Alex and 

Lena, used circular path movements in order to represent the ‘flow’ of electricity. At 

this point in the activity the children had made a simple circuit and were discussing 

the behaviour of electricity, both children demonstrated an awareness that electricity 

moves in a continual motion around the circuit (image 2, Figure 27). It is proposed 

that this gesture enables us to have a clear understanding of how these children 

think that electricity moves but their verbal responses are also revealing and they 
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enable us to see that although the children have an idea about how electricity travels 

they do not attempt to define its nature. 

Time Person Verbal Report Gesture 

03:27 RS Does it stop at the bulb though or 
does it go somewhere else 
afterwards? 

 

 Alex No it keeps… As Alex speaks he 
uses his right index 
finger to draw a circular 
path over the top of his 
circuit. 

 Lena It just keeps travelling round. As Lena speaks she 
draws a circular path 
over the top of her 
circuit with her right 
index finger. 

Table 22: An abstract from a Year 6 transcript demonstrating how two children use 

the circular representational gesture in their discussions of the movement of 

electricity in a circuit (RS = researcher). 

 

Although representational and expressive gestures were the most commonly 

occurring, expressive gestures were also frequently used by the children. As 

previously identified in the pilot studies expressive gestures were used by children in 

order to show the strengths of values such as a responses.  

 

 

Figure 27: A referential, a representational and an expressive gesture drawn from 

the Research Phase 2. 
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Expressive gestures came in many forms and appeared to be strongly linked to the 

accompanying verbal discussions that children provided; however, they appeared to 

represent values that children found difficult to describe in language. The following 

examples drawn from the transcripts demonstrate how children used this form of 

gesture during the electricity activities. In the following extract, Selena, a Year 2 

child, was discussing her ideas for why a bulb in the circuit diagram that she has just 

completed would now light (image 3, Figure 27). Her expressive gesture captured 

how she thought light behaved when it was emitted from the bulb in the circuit, it is 

proposed that she used her fingers to represent the light and by spreading them as 

wide as she could she represented the way in which this light would be visible from 

the bulb. 

 

Time Person Verbal Report Gesture 
05:45 Selena I know, the electricity comes out 

of there, forces through the 
crocodile clips and lights up the 
bulb, and all these like sparks 
come out. 

As she speaks 
Selena points to the 
picture of the 
battery on her 
drawing, then to the 
wire, then to the 
bulb. As she says 
sparks she lifts both 
of her hands into 
the air and spreads 
her fingers as wide 
as they can go then 
lowers them back 
to the top of the 
table. 

Table 23: Selena, a Year 2 child used an expressive gesture to represent the 

behaviour of light which is emitted from a bulb in her circuit drawing. 

 

Expressive gestures such as this one may be valuable for providing insight into how 

the children think certain things will behaved. However, one important finding from 

both the pilot studies and the main data collection phase was related to the 

importance associated with knowing when children were ready or not to move on 

with discussions. This was sometimes possible to ascertain through the thinking 

gestures that the children produced. As previously discussed thinking gestures are 

particularly important cues that can be used in order to judge whether or not 



212 
 

discussions should be moved on or whether children should be given more time to 

respond.  Throughout the activities there were a number of incidents when the 

children used thinking gestures during their discussions. In the first example shown 

in Table 24, Mike, a Year 2 participant, was discussing his ideas for why the bulbs 

get dimmer when, he began with the verbal utterance of ‘well’ and then he raised his 

hands to his forehead before looking down at the top of the table (image 1, Figure 

28). Shortly after Mike begins to speak again, but this gesture is proposed to 

represent a non-verbal cue that he needs a moment to consider his ideas before he 

is ready to verbalise them. 

 

 

Time Person Verbal Report Gesture 
05:37 Mike Well... As he starts to speak 

he puts both hands to 
his forehead and then 
looks down to the 
table. 

Table 24: Mike, a Year 2 child, using a thinking gesture to signal that he requires 

some time to consider his ideas before he can respond to the researcher’s probes. 

 

Whilst thinking gestures can be helpful for knowing when to move on with 

discussions other forms of gestures, social gestures, were used by the children in 

order to elicit social support as well as signify agreement with other group members. 

In the example presented here a social gesture is shared between Janet and Noel, 

Year 9 participants, as they discuss which materials act as insulators.  
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Figure 28: An example of a thinking and a social gesture drawn from Research 

Phase 2. 

 

Whilst Janet names different materials Noel points to them on the desk, Janet 

acknowledges this and nods to him (image 2, Figure 28). Noel’s pointing behaviour 

appeared to have two functions; firstly it was used in a referential manner to illustrate 

what Janet was referring to and secondly it can be interpreted as providing social 

support for Janet’s ideas because Noel was showing a form of agreement. Janet’s 

nod acknowledged Noel’s addition to her discussion. 

 

Time Person Verbal Report Gesture 

09:03 Janet Rubbers and plastics. Nods to Noel as he points 
to the materials. 

Table 25: Year 9 child Janet uses a social gesture to acknowledge the support that 

Noel has given her throughout the activity. 

 

These results of the analysis focusing on gesture show support for the notion that 

studies of gesture are important if we are to understand all aspects of children’s 

ideas. The gestures discussed here do appear to have an important role in the 

children’s communication strategies. In addition, it is proposed that these gestures 

reveal aspects of the children knowledge and understanding that is not contained in 

their other response types. For example, the representational gestures used often 

include details of how children thought electricity moved in a circuit, such discussions 

never appeared in their verbal or written responses to probes of their understanding. 

Such gestures may also reveal underlying mental processes, for example, 
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representational gestures are frequently used to show how objects or processes 

behave and this may be a form of embodied cognition where the knowledge of the 

process is held in the physical action rather than a verbal explanation, such an 

interpretation would be consistent with the work of Karmilloff-Smith (1992, see 

Chapter 3). Furthermore the gestures do appear to offer a window into the children’s 

problem solving activities, how they work with others and socially negotiate concepts 

as well as revealing something about their learning.  

 

6.4.2 Year 2 Group Study 
 

 

This group study focused on a group of four children (three female, one male) called 

Lisa, Tara, Selena and Mike from Village Primary School. The activity lasted 

approximately 40 minutes. The activity was held in the school library area which 

contained two large round tables. The children were encouraged to sit around one of 

the tables so that they could build their electrical circuits. The group had been 

defined by the Year 2 class teacher in the school. The teacher had asked the 

researcher how she would like the children to be grouped and at the researcher’s 

request had allocated the children so that each group contained a range of different 

academic abilities. The group worked well together and frequently engaged each 

other in discussion. This particular group actually demonstrated little change in their 

ideas about electricity following the conceptual challenge aspect of the practical 

activity. However, all of the children in this group used gestures at some point during 

the activity and the gestures that they did use sometimes appeared to contain 

conceptual knowledge and other important features that was not evident in their 

speech or from other tasks. 

The initial analysis presented here focuses on the multimodal representations that 

children brought when first discussing their ideas about electricity. Storyboard 1 (see 

Figure 29) details the ideas contained within the content of the children’s drawings, 

their verbal responses to probes of their knowledge, their written responses to the 

sentence completion task and the gestures that they used as they talked. An 

analysis of the content of their drawings revealed that all four children are able to 

complete the task by drawing in the wires in order to make a complete circuit. It is 



215 
 

proposed that these drawings contain information that goes beyond their verbal 

responses as they clearly show that they children also had awareness that in order 

to make the bulb light they must make a complete circuit with wires connecting the 

battery to the bulb. However, for two of the children the wires were inappropriately 

placed, notably they were connected to the middle of the battery rather than to the 

end of the battery. It could be suggested that by drawing in the wires in this way the 

children’s awareness of the importance of connecting wires to each pole of the 

battery was not yet firmly established. However, it could also be proposed that these 

drawing may just represent a careless completion of the task where the children paid 

little attention to the small details such as where the wires should be connected.  In 

addition, one of the children, Mike, also drew in a battery holder. This inclusion may 

perhaps draw on his previous experiences of making circuits in the classroom where 

the children generally use a battery pack in order to make connecting the wires 

easier.  
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Figure 29: The storyboard from the Year 2 children’s electricity activities.
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None of the children in this group provided a written response to the sentence 

completion task but they did offer verbal responses when probed (we will return to a 

discussion of these later). All of the children agreed that it was important for the wire 

to run from the battery to the bulb and then for another wire to run back to the battery 

to complete the circuit. All of the children agreed in their verbal responses that 

electricity ‘makes things work’. Interestingly, this particular group of children 

frequently gestured throughout the activity and at the first probe of ideas for 

electricity Mike uses his hands to produce a circular gesture (see Table 26 and 

Figure 30). It is proposed that this circular gesture may show one of two things, 

firstly, the circular gesture may refer to Mike’s underlying knowledge of how the lights 

in the school are connected in a circuit. Alternatively, Mike’s gesture may represent 

an understanding of how the electricity moves in a circuit. It is proposed that either 

conclusion would demonstrate that Mike has an awareness of a circuit that is not 

verbally expressed and it is important to note that at this stage in the activity this 

concept has not been introduced and it does not appear in any of the children’s 

verbal responses. 

Time Person Verbal Report Gesture 
00:55 Mike Erm it helps you, say if this whole 

room was dark and if you wanted 
the lights to turn on you would 
have to have electricity.  

As he speaks Mike uses 
his right index finger to 
make a circular gesture in 
the air. 

Table 26: Mike’s circular gesture which is proposed to detail his understanding of a 

circuit even though this idea is not present in his verbal response. 

 

With the exception of one child in this group, Selena, the children all appeared to 

hold a ‘clashing currents’ model for electricity (Osborne, et al., 1991; Borges & 

Gilbert, 1999). Selena, at least initially, appeared to hold a ‘Unipolar’ model as her 

discussions focus on the electricity travelling from the battery and ending at the bulb 

(Osborne, et al., 1991; Borges & Gilbert, 1999). In this particular group there was no 

evidence of the framework of understanding changing according to the task 

specificity when the additional bulb was added, the children’s models appeared to be 

applied consistently throughout the activity and indeed as shown in storyboard 1 

(Figure 29), the children did not revise their ideas at the end of the activity after they 

have completed the conceptual challenge aspect of the task.  However, Mike, did 
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acknowledge that the conceptual challenge contained information that was different 

from what he had thought although it is difficult to provide additional information as to 

what he meant by this. 

 

 

Figure 30: Mike’s representational gesture from Table 26, Lisa’s representational 

gesture from Table 27 and Mike’s referential gesture from Table 28. 

 

As discussed earlier, this particular group of children frequently used gestures 

throughout the activity and often these gestures reinforced their verbal discussion or 

contained additional knowledge that is not conveyed in their verbal responses. A few 

key examples are illustrated here. In our first example Lisa was discussing the types 

of things that use electricity. She suggested that boats are sometimes electric, as 

she says this she uses both of her hands to produce a representational gesture in 

order to show the boat (see transcript extract in Table 27 and Figure 30). 

 
Time Person Verbal Report Gesture 
01:47 RS What kind of things do you think use 

electricity? You’ve already talked 
about lights but what else uses 
electricity? 

 

 Mike When you want boats to move.  
 Tara Cars.  
 Lisa Sometimes you have electric boats. As she says this Lisa 

holds her right hand out 
flat in front of her with 
her palm facing upwards 
as she finishes speaking 
she places her hand 
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back on her knee. 
Table 27: Lisa uses her hands to represent a boat in order to support her verbal 

discussion. 

 

It is proposed that Lisa’s gesture was used to support her verbal discussion and 

serves as a representation of the boat that she was discussing. The gesture had a 

clear introduction and ending and allowed the onlooker to visualise Lisa’s intended 

meaning, notably the way that Lisa held her hands allowed us insight into how she 

thought the boat will behave in the water. In another example, Mike was discussing 

how he thought a bulb holder was important in order to make the bulb in his circuit 

diagram light. He uses the end of his pencil to point the bulb in the picture in order to 

clarify his intended meaning (see transcript extract Table 28 and Figure 30). 

Although Mike’s verbal discussion proposed that a bulb holder was needed his 

pointing gesture indicated where it would need to be placed in the diagram in order 

for it to be effective. After Mike had finished speaking he went on to draw in the bulb 

holder at the location that he had specified. It is proposed that pointing gestures such 

as these helped to add to participants intended meaning as they provide an anchor 

to objects or locations in the external world. 

 
Time Person Verbal Report Gesture 

04:18 Mike Wouldn’t you need like a bulb 
holder? 

Points to the bulb on his 
picture using the end of his 
pencil. 

Table 28: Mike’s pointing gesture used to show where a bulb holder would need to 

be placed in his diagram. 

 

In the following example, Tara used a two handed gesture to demonstrate 

knowledge that is not readily available in her verbal response. Indeed her two 

handed gesture which demonstrates how she thought the electricity flows from both 

sides of the battery to the bulb allows us to categorise Tara’s ideas about electricity 

within the ‘clashing currents’ model (Osborne, et al., 1991; Borges & Gilbert, 1999), 

whilst her verbal response “because the power comes that side and that side” is 

fairly ambiguous (see transcript extract Table 29, Figure 31). This type of path 
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gesture used to represent the movement of electricity in a circuit was fairly typical 

within the corpus of audio-video data.  

 

Time Person Verbal Report Gesture 
06:19 Tara Cuz that wire needs to go that 

side and that wire needs to go 
that side because the power 
comes that side and that side. 

As she speaks Tara uses the 
end of her pencil to point to 
the battery pack and the wires 
on the drawing, she then 
draws two paths one from 
either side of the battery to the 
bulb. 

Table 29: Tara’s referential gesture used to clarify how she thinks electricity moves 

in a circuit. 

 

As well as using gestures to communicate understanding, some children used the 

physical activity of building the circuit during their discussions of their ideas. It could 

be suggested that these occur by chance but in the following example Mike 

deliberately dismantled his circuit and rebuilt it as he discussed his ideas (see 

transcript extract Table 30, Figure 31). It is unclear whether this action was to 

support Mike as he discussed his idea or whether the physical act of building the 

circuit was more personal and used to support Mike’s access to his knowledge.  

 
Time Person Verbal Report Gesture 

09:28 Mike The batteries are working. You 
connect all of the wires to the 
stuff that you need to make to, 
and then you need to have two 
of these (wires with crocodile 
clips) and then you connect both 
of these to there and then you 
need to see if the battery works 
and then you just put two, both 
of them on there and then it 
comes out. 

As he talks about how to make 
the circuit Mike takes apart his 
working circuit and then puts it 
back together, as he gets to the 
end of his explanation he 
finishes the circuit and the bulb 
lights up. 

Table 30: Mike dismantles and then rebuilds his circuit as he discussed his ideas 

about what is happening in his circuit in order to make the bulb light. 

Clearly within this group of children, gesture and the physical act of holding objects 

and building circuits appeared to play an important role in the children’s discussions. 

Thus it is proposed that an analysis of gesture alongside the analysis of verbal 
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responses is fundamentally important if we are to understand the ideas that children 

have. In addition to the analyses of gesture, the storyboard summarises some of the 

important discussions and ideas that the children had during the activity. For 

example, when discussing why the bulbs become dimmer when more are added to 

the circuit, Mike proposed that this occurred because the electricity had to “travel 

further”. Selena, further suggested that the more complex circuits had “too many 

places for the electricity to go”. It could be suggested that these discussions 

contained more advanced knowledge of electricity than is permitted within the 

electricity models introduced and that these discussion allude to an early conception 

of resistance and the way that this may impact on how the electricity travels around 

the circuit. This example demonstrated the complexity of the ideas that these 

children have and interestingly it appears as though Mike and Selena provided a 

supporting environment for these complex discussions where one child introduced 

an idea and another builds on it. Discussions of this complexity may not have 

occurred if this project had approached investigations of children’s ideas from the 

conventional single participant interview approach.  

 

Figure 31: Tara’s referential gesture Table29, Mike’s rebuilding his circuit as he 

discussed his ideas Table 30 and Mike holding the wire while he discussed his ideas 

about conductivity Table 32. 

 

The group study also permitted the opportunity to explore the children’s approaches 

to conducting a scientific investigation. The material sorting task, which was used to 

explore which materials the children thought would conduct electricity was 

particularly illustrative of the children’s knowledge of a using a scientific approach in 

their work. All of the children adopted a systematic way of testing the materials for 
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conductivity. They tried one item at a time and then drew their conclusions from this 

testing. It is interesting to note that the accuracy of the children’s predictions were 

variable. Mike thought that a sponge ball would conduct electricity whilst Lisa was 

adamant that only metal objects would conduct. Despite this clear disagreement 

between the participants regarding the objects, the children did not engage in 

debate, they simply listened to each other’s ideas then expressed their own. Selena 

offered a particularly interesting comment when she proposed that materials that are 

soft would let the electricity pass through whilst materials that are hard would stop 

the electricity. When asked to clarify why she thought this Selena replied that things 

that are soft would not break (see transcript extract Table 31). 

 
Time Person Verbal Report Gesture 

21:54 Selena Things that are soft will let it go.  
 RS Why do you think that?  
 Selena Cuz they are not hard and things 

that are soft will cuz it is just so so 
so so soft that it won’t break. 

 

Table 31: Selena proposed that soft objects will let electricity pass through. 

 

It was clear at this point that Selena had expressed her ideas as deeply as she could 

at this stage and that it was time to move the activity on. Despite the contrasting 

views regarding which materials will conduct electricity none of the children showed 

surprise at the items that did and none of the children referred back to their earlier 

predictions. Following the testing of the materials the children proposed that all metal 

things let electricity pass through and when asked why they thought that the children 

indicated that it was because switches are made out of metal (see transcript extract 

Table 32, Figure 31). 

 

Time Person Verbal Report Gesture 
31:29 RS Okay what is it about metal then 

do you think that lets electricity 
pass through? 

 

 Mike Ooh, metal it’s sometimes erm 
switches are made out of metal 
cuz electricity its, fits it, the wire 
goes through the pass and then 
it goes into the light. 

Mike holds a wire in his hand 
as he discusses his ideas. 

Table 32: Mike discusses his ideas for why metal conducts electricity. 
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Taken as a whole, this particular group study illustrated the importance of the 

multimodal analysis for facilitating a more holistic understanding of younger 

children’s ideas. The analysis of drawing enabled the researcher to explore 

awareness of the structure of a circuit even though these were not evident in the 

verbal and written responses given. Having an awareness of the content of children’s 

gesture was also important as these frequently permit the researcher to access a 

deeper understanding of children’s ideas, their thinking, and problem solving ability 

and learning. Notably, it was through an analysis of gesture that it was possible to 

clearly differentiate between which frameworks of understanding about electricity the 

children held, for example, it was only by analysing gesture that it was possible to 

identify that Tara held a ‘clashing currents’ model. This group study also helped to 

demonstrate how the storyboard analysis can be used to collect a summary of 

complex data. 

 

6.4.3 Year 6 Group Study 
 

 

The Year 6 case study focused on five children (three female, two male) called 

Rachel, Alice, Sophie, Peter and John from Village Primary School. This group study 

lasted approximately 45 minutes. The activity took place in the school library which 

contained two large round tables and the children were grouped around one of the 

tables so that they had a flat surface on which they could build their circuits and so 

that they could work together with ease. The group had been defined by the class 

teacher and at the request of the researcher contained a range of different academic 

abilities. The group worked well together and frequently collaborated in order to 

generate ideas and to support each other in the completion of the tasks. An overview 

of this case study is available in the storyboard 2 (Figure 32).  

In the children’s initial discussions of what electricity was this group of children 

identified that they thought that electricity “powers things”. What was interesting was 

that as Sophie said this she also used a circular gesture which accompanied her 

verbal response. The circular motion that she used could be interpreted as revealing 

an underlying understanding for the way that electricity moves in a circuit (see 

transcript extract Table 33, Figure 33). Alternatively it is possible that the circular 
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gesture was used to support Sophie’s thinking as she talked through her ideas. 

Whilst we cannot be certain which interpretation is the most appropriate this gesture 

does appear to be used to support her verbal response. 
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Figure 32: Storyboard from Year 6 electricity activities.
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Time Person Verbal Report Gesture 

00:16 Sophie Electricity is what powers things 
like phone and things like that. 

As Sophie speaks she uses 
her right hand to make a 
circular waving motion. 

Table 33: Year 6 child Sophie uses a circular gesture as she discusses her ideas for 

what electricity is. 

 

The drawing task that the children completed revealed that all five children were able 

to generate an appropriate circuit diagram (e.g. two wires were drawn, one from 

each side of the bulb and these connected to either side of the battery). This 

particular group of children were interesting as they specifically asked if they could 

work together. Once it was confirmed that this was okay the children discussed the 

task and its requirements and each child’s suggestions were acted upon by the 

whole group. One child read out the instructions and the others all identified 

elements that would need to be drawn into the diagram in order to make the bulb 

light. For example, when completing the circuit diagram, Rachel proposed that they 

needed to add a switch. John highlighted which symbol should be used and Sophie 

clarified her understanding and then asked the others for guidance regarding where 

she should put the switch in her diagram. This group were particularly good at 

producing collaborative work when compared to other groups of children who had 

participated in the activities. They frequently supported each other during the activity 

and offered advice to each other on approaches to completing the work (see 

transcript extract Table 34; Figure 33). 

 

Time Person Verbal Report Gesture 
03:54 Alice Reads from the sheet, Complete the 

picture to make the bulb light. 
 

 Rachel You need a switch.  

 Alice  Wires, we need like wires.  
 Sophie Should we be talking amongst 

ourselves? 
 

 RS Yes, that’s ok.  
 Sophie Can we have the leaflet please? 

Referring to the sheet that the 
researcher has used containing the 
symbols for electricity. 

Sophie points to 
the piece of paper 
that she wants. 
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 RS Yeah, of course you can.  
 John The switch is that one. John uses his 

pencil to point to 
the symbol that he 
thinks he needs to 
use. 

 Sophie That one? Sophie uses her 
pencil to point to 
symbol. 

 John Yeah.  
 Sophie So where does that need to go, does it 

have to go towards the battery? 
 

 Rachel It could go there or there. Rachel uses her 
right index finger to 
indicate either side 
of the battery. 

Table 34: Transcript from the Year 6 case study demonstrating how the group works 

together in order to support the development of each other’s ideas (RS = 

researcher). 

 

In this instance, and as expected, all five children added the additional feature of a 

switch to their circuit diagrams. Interestingly, however, three of the children (Rachel, 

Sophie and Peter) drew in the symbol for an open switch that they had been taught 

prior to distributing the worksheets whilst the other two children (Alice and John) 

drew a switch symbol that was placed in the closed position. It could be suggested 

that for these two children the awareness that there could be no gaps in a circuit in 

order for it to work prompted their decisions to draw the switch in this position. 

Furthermore, the discussion in the transcript extract above provided evidence that 

both Alice and Peter were less active in the discussion about the inclusion of the 

switch than the other three children. 
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Figure 33: Sophie’s representational gesture (Table 33), Sophie’s referential gesture 

and John’s referential gesture(Table 34).  

 

The circular gesture that Sophie produced during the initial probes of the children’s 

ideas about electricity emerged again whilst the children worked through their 

explanations of what they thought was happening in the circuit diagram in order for 

the bulb to light. The extract from another transcript (Table 35, Figure 34) shows how 

both Sophie and John used this circular gesture as they discuss how the electricity 

moves. It is proposed that this gesture was used to represent the electricity and that 

as seen in Sophie’s response the gesture went beyond the information that was 

available in the children’s verbal responses. What was also interesting about this 

particular extract is that it shows how these two children collaborated in order to 

generate an explanation for the movement of electricity that is acceptable to both. 

Sophie struggled to find the words in order to explain her ideas, John appeared to 

respond to this and stepped in and offers his own explanation which Sophie then 

supported. 

 
Time Person Verbal Report Gesture 
05:54 Sophie The switch...like power in the 

bulb. 
As Sophie says this she uses 
the end of her pencil to draw a 
circular motion in the air above 
the table. 

 John Well, the battery like power like 
goes through the wire, like the 
electricity from it and lights up the 
bulb and turns it on when you 
press it on. 

As John speaks he makes a 
circular motion with his left 
hand and when he says 
‘switch it on’ he moves is 
hand, index finger extended 
and mimes pressing a switch 
on. Once he has done this he 
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uses this left hand to make the 
continuous circular motion 
which he only stops once he 
has finished talking. 

 Sophie That’s what I meant.  
Table 35: An extract for the Year 6 transcript which showed the use of 

representational gestures to support ideas about electricity and how the children 

supported each other’s discussions. 

 

This particular group did not produce any written responses to the sentence 

completion task but this was not unusual for this age group. The framework analysis 

for the children’s ideas about electricity revealed that all five children held ‘closed 

circuit’ models for their ideas (Obsorne, et al., 1991; Borges & Gilbert, 1999).  

 

Figure 34: The gestures used by the children to represent electricity moving through 

a circuit.  

 

That is, they all appeared to understand that it is important for all circuit elements to 

have two connections and that the circuit only operates when the switch is closed. All 

children appeared to show a lack of differentiation between current and energy. 

However, once the task was changed and the children were asked to predict what 

would happen to the bulbs if an extra bulb was added to their circuit they all 

appeared to use the ‘sharing’ model in their responses (see transcript extract Table 

36). 

 

Time Person Verbal Report 
09:10 Sophie But the more bulbs that you have, it won’t be a powerful because 
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they will be sharing electricity. 
Table 36: A Year 6 participant discusses what will happen if more than one bulb is 

added to a series circuit. This response is typical of a child who holds a “sharing” 

model about electricity. 

 

Evidence such as this suggests that great care needs to be taken when placing 

children’s ideas into frameworks as the frameworks used when explaining ideas can 

be heavily task specific and can appear to be subject to change according to the 

conditions surrounding the probes. The data suggests that although the conditions 

may appear to support the notion of change, in actuality the children are just 

responding to the stimulus and are applying different frameworks according to what 

they think is appropriate. 

As the children worked through the activity this group continued to support each 

other, for example, John and Peter had been working together in order to build their 

circuits. At one point during the activity they encountered a problem and their bulb 

stopped working, Rachel and Sophie offered assistance and tried to help the boys to 

solve their problem. The girls actively directed the boys to different parts of their 

circuit and made suggestions for ways that they could fix it. The children collaborated 

in order to try a new bulb, new wires and a new battery but when they failed to get 

the circuit to work again they agreed that as a group they will use the working circuit 

that the girls have previously constructed.  During the course of the activity this 

particular group also widely used gestures in order to support their verbal 

articulations of ideas and in some cases to reveal information that went beyond the 

content of their words.  

In the next example, John is discussing what he thinks happens in a battery, his 

gesture described in the third column shows how he thinks electricity in a battery 

behaves (see transcript extract Table 37, Figure 35). 

 
Time Person Verbal Report Gesture 

34:20 RS Okay then, can I ask you what 
you think happens inside the 
battery? 

 

 Alice Is it like, it turns or something? As she speaks Alice rotates 
both of her hands around 
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each other. 
 John Yes, I was about to say that, the 

electricity is like a rolling pin, it 
keeps moving, it keeps like 
spinning round and it feeds the 
electricity through the wires. 

As he speaks John circles 
each of his hands around 
each other, as he says ‘feeds 
the electricity’ he stops 
rotating his hands and uses 
his right hand to point to one 
of the wires in the simple 
circuit that is on the table in 
front of him. 

 Rachel ....round.  

 Sophie Yeah, and that’s how it makes the 
electricity. 

 

Table 37: John uses a representational gesture in order to show how he thinks 

electricity behaves in a battery (RS = researcher). 

 

The particular gesture in which John demonstrated how he thinks electricity behaves 

in a battery permitted the identification of information that went beyond the content of 

his articulation, notably, John proposed that electricity is ‘like a rolling pin’. As he said 

this he used both of his hands to produce a circular motion. This circular motion in 

which John’s hands rotate around each other can be interpreted as showing how he 

thought the electricity moved around inside the battery until it was fed into the wires 

of the circuit. A similar gesture to this was first introduced by Alice who proposed that 

the electricity in the battery ‘turns or something’, this articulation was accompanied 

by her rotating each of her hands around each other. The idea that electricity rotates 

inside the battery before it fed out into the wires was supported by the other children 

in the group and Sophie could be seen to add verbal support at the end of the 

transcript extract.  

 

 

Figure 35: Alice and John’s representational gestures (Table 37). 
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In another example John used referential gestures in order to add clarity to his verbal 

response. In the transcript extract (Table 38, Figure 36) John pointed to different 

items in his circuit in order to locate the objects that he was referring to. It is 

important to note that without the inclusion of the gesture in this discussion it would 

be difficult to know exactly what John was referring to when he discussed “that metal 

bit”. Referential gestures such as these are fundamentally important for facilitating a 

good understanding of the children’s ideas and the children frequently made these 

non-verbal links between their articulations and objects that were present in the 

room. 

 
Time Person Verbal Report Gesture 
09:35 John It travels from that metal bit to 

that metal bit. 
As John speaks he first points 
to the metal clip at the side of 
the battery, then to the metal 
clip at the side of the bulb, then 
to the metal on the opposite 
side of the bulb. 

Table 38: John, a Year 6 pupil, used a referential gesture in order to locate objects 

that he was discussing. 

 

Within this group of children a number of interesting discussions arose as the 

children worked through the activity. A few are highlighted here and in the storyboard 

for this group study. Firstly, Rachel proposed the notion that electricity generates 

heat, this idea is supported by Sophie who later extended this idea to include the 

notion that there can be too much power in a circuit and that this can stop the bulbs 

from working. In the children’s discussions of materials that they thought conduct 

electricity it was suggested metals are the best conductors. Alice proposed that this 

is because “metal is like wire”, however, she also acknowledged that some metal 

may not work. In addition to this idea that metal is the best conductor, Alice proposed 

that “thick” items such as wood may not conduct electricity because they don’t have 

any wires in them whilst Sophie proposed that “rubber stops electricity”. The children 

sorted the materials with a high degree of accuracy, one exception being the piece of 

rubber which Sophie proposed stops electricity, Peter was uncertain of this and 

asked her to confirm how she knew that to which she replied that she just 

remembered. The result of this discussion was that the group became split with 
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Peter and John expressing uncertainty as to whether the rubber would conduct 

electricity whilst Sophie, Alice and Rachel all agreed that it would not.  

When asked to design an approach for testing the materials the children propose the 

following (Table 39): 

 
Time Person Verbal Report 
23:59 Rachel Keep the wires and everything the same just add the 

materials into the circuit one by one. 
 John I would get rid of the switch, cuz you won’t really need the 

switch in there. 
Table 39: Rachel and John’s ideas for how they can structure the test of materials in 

order to explore whether they conduct electricity. 

 

Once invited to carry out the testing the children adopted a scientific approach, they 

tested one item at a time and checked the results before placing all of the items that 

conducted electricity together and all of the items that did not together. When 

discussing the results of their testing none of the children expressed surprise and 

their discussions about metals conducting electricity was extended to include details 

based on the children’s observations during the testing phase. Notably, John 

proposed that some metals when placed in the circuit resulted in the bulb shining 

brighter than it did for others and he suggested that when they tested the materials 

the piece of lead resulted in the brightest bulb. 

Within this group there was some evidence of a change beginning to appear in the 

children’s ideas about electricity in response to the conceptual challenge aspect of 

the activity. Whilst the overall framework of the children’s ideas remained unaffected 

in their responses to what they thought electricity was at the end of the activity they 

now included the concept of energy. This term had not been used by the children 

previously during the activity and only emerged once the children have taken part in 

the electrons role play. The free responses provided by the children further 

supported the view that the children had been able to explore something new within 

this task, Rachel stated “I don’t think that I was like a 100% sure…but I thought it 

would all go at once…” Sophie proposed that she hadn’t known what to expect and 

Alice acknowledged that she already had the idea that the electricity would travel 

round the circuit (see transcript extract Table 40, Figure 36). 
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Time Person Verbal Report Gesture 
40:04 Sophie I don’t know, I didn’t really know 

what to expect really. 
 

 Alice I did, cuz I knew it would go round 
like, but I won’t really like. 

As she speaks Alice uses her 
right hand to draw a circle in 
the air in front of her. 

 Rachel I don’t think that I was like a 100% 
sure, bits of electricity going 
through at a time, but I thought it 
would all go at once, I didn’t think 
it would be bit by bit. 

Points to the circuit in front of 
John. 

Table 40: Sophie, Alice and Rachel’s responses to the conceptual challenge aspect 

of the task. 

 

Figure 36: John’s referential gesture (Table 38) and Alice’s representational gesture 

(Table 40). 

 

The inclusion of the term energy begins to move the children towards an even more 

advance scientific model of electricity. Interestingly, no such inclusion was observed 

within any of the data from the younger children in Year 2.  

Taken as a whole this particular group study begins to offer support for the 

conceptual challenge aspect of the task. The results appear to show the beginnings 

of conceptual change that would probably be associated with a form of weak 

restructuring (e.g. the children add new knowledge to their existing ideas but they do 

not change the core concept within these existing ideas radically). In addition, this 

particular group demonstrated the importance of understanding the social context of 

learning, these children frequently engaged in debate, questioned ideas that were 

presented by others and offered social support when peers were struggling to 

articulate their ideas.  
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6.4.4 Year 9 Group Study 
 

The Year 9 group study focuses on a group of four children (two female, two male) 

called Janet, Alisa, Liam and Noel from Village Secondary School (see Storyboard 3, 

Figure 37). This group study lasted approximately 30 minutes. It should be noted that 

this was much shorter than the activities that had been held with the other children, 

in part because none of these children struggled with constructing the circuits and in 

part because this group quickly generated ideas, built on those ideas, and were then 

ready to move on. The activity was held in a vacant science laboratory within the 

school. Throughout the activity one secondary school science teacher remained in 

the room in order to observe and comply with the insurance specifications of 

teaching in this environment. The group was randomly generated by the researcher 

who formed the group by drawing names from the consent forms provided by the 

participating children. The researcher had no prior knowledge of the children’s 

academic ability prior to forming the group but it was proposed by the class teacher 

that the children in this class were of mixed academic ability.  This group of children 

worked well together but tended to be quieter than the younger children during the 

activities, they did discuss ideas and sometimes offered support to each other during 

the activity but this is no way close to the scale that is observed within the Year 6 

group study. 

At the beginning of the activity the children were probed for their ideas about 

electricity. All of the children agreed that electricity powers things and is a form of 

energy. When probed about their understanding of what type of energy this might be 

Janet proposed that she thought it was ‘kinetic’ energy and that this was ‘a 

movement’. When probed for their knowledge of the symbols that were used for 

different electrical components, all of the children were able to name and identify the 

cell, bulb, wire, switch and motor. However, none of the children were able to identify 

the symbols for ammeter and voltmeter. As these children were familiar with the 

symbols for cell and bulb they were issued with that worksheet rather than the one 

with pictures. All four children’s drawings revealed that they understood the need to 

draw in wires between the cell and the bulb. There were no additional inclusions 

made into these drawings. It is suggested that the drawings produced by these 

children revealed their underlying understanding of the need for a complete circuit in 
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order for the bulb to light. In addition, all of the drawings were completed using wires 

that connected to the poles of the battery. Notably, the children in this age group 

produced more rectilinear drawings than the drawings produced by the younger 

children. 
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Figure 37: Storyboard from Year 9 electricity activities.
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All four children provide written responses to the sentence completion task “The bulb 

lights because…” and these responses were as follows: 

Electricity from the battery passes through the wire to the bulb (Janet) 

Wires connect the bulb to the battery giving it power (Alisa) 

 Energy is passed through the wires to the bulb (Liam) 

Battery power travels through the wire and powers the bulb (Noel) 

The written responses further revealed the children’s understanding that the battery 

transfers its energy through the wires in the circuit in order to make the bulb light. It 

is important to note that other than Janet’s explanation of electricity being a form of 

kinetic energy none of the other children identified what kind of energy they thought 

electricity was. It is also notable that at this early stage in the activity only two 

gestures appeared to be produced, the first came as Janet explained what she 

meant by kinetic energy. As Janet discussed the movement of kinetic energy she 

used her right hand to make a side to side motion in the air in front of her (transcript 

extract Table 41). This representational gesture was used to show the way that she 

conceived kinetic energy (e.g. it is a movement through space). 

 
Time Person Verbal Report Gesture 
01:20 Janet Kinetic but that’s energy isn’t it, 

kinetic? 
 

 RS When you say it’s kinetic what do 
you mean? 

 

 Janet It a movement. As she says movement 
Janet uses her right 
hand to make a side to 
side motion in the air in 
front of her. 

Table 41: Janet uses a representational gesture in order to show how she thinks 

kinetic energy moves (RS = researcher). 

 

The second occurrence of gesture appeared as Liam discussed his ideas for what 

he thought was happening inside a circuit. As he talked Liam used both a thinking 

gesture and a referential gesture, the initial thinking gesture (bouncing the pencil 

between which thumb and index finger) kept pace with his verbal response, 
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however, once he articulated the word light he then used a referential gesture in 

order to point to the bulb in his circuit diagram (transcript extract Table 42, Figure 

38). This referential gesture helped to support his verbal articulation by adding 

further detail (e.g. his pointing gesture directs attention to the bulb on the page and 

allows Liam to anchor his discussion to this object). 

 
Time Person Verbal Report Gesture 
03:27 RS Okay, so can I ask you then, what do 

you think is actually happening in that 
circuit to make the bulb light? 

 

 Liam The energy from the battery is being 
passed through the wires to the light 
which makes it light up. 

As he speaks Liam 
bounces the pencil 
between his thumb 
and index finger, 
when he says light 
he indicates to the 
picture of the bulb 
on his paper and 
then continues to 
bounce the pencil 
again. 

Table 42: Liam uses two gestures to illustrate his ideas about why the bulb lights in 

his drawing (RS = researcher). 

 

The framework analysis conducted on the children’s ideas revealed that all four 

children held a ‘closed circuit’ model for their ideas of electricity (Osborne, et al., 

1991, Borges & Gilbert, 1999). The closed circuit model was allocated as at this 

point in the activity the children had demonstrated their understanding of the need for 

all circuit elements to have two connections. In addition, and at this point in time, it 

was clear that the children did not differentiate between current and energy.  
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Figure 38: Liam’s referential gesture (Table 42) and his referential and 

representational gestures (Table 43). 

 

However, once the task was changed and the children were probed for their ideas of 

what they thought would happen to the brightness of the bulbs once more were 

added to the simple circuit, all of the children appeared to apply a ‘sharing’ model for 

their ideas of electricity. Notably, the children proposed that two bulbs share the 

current in a circuit and the battery was perceived as a constant source of current. An 

example of this can be seen in Liam’s response (transcript extract Table 43, Figure 

38). Liam proposed that there would be the same amount of electricity in the circuit 

and this electricity had to power both bulbs, therefore the power had to be shared 

between them both. In addition, Liam supported this proposal with a referential 

gesture pointing to objects in order to anchor his verbal discussion to specific 

objects. 

 
Time Person Verbal Report Gesture 

06:34 Liam Because there is the same amount of 
electricity but it’s got to power both 
bulbs and so you’ve got to share it 
between the two of them. Not as much 
energy goes to both bulbs. 

As he speaks he 
points to the battery 
and then to the bulb 
and then lifts his 
hand up so that it is 
held flat with the 
palm upwards. 

Table 43: Year 9 child, Liam used a referential gesture in order to anchor his 

discussions to the objects. 
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Overall, the gestures produced within this group were far less frequently occurring 

than they were within the groups of the younger children, however, gestures were 

used at some critical points within the activities. For example, when the children 

discussed their ideas about why different materials conduct electricity the children 

entered into a discussion about particles, their placement in different materials and 

the way that this influenced the materials ability to conduct electricity. These verbal 

discussions were accompanied by representational gestures that helped to 

demonstrate the potential movement of electricity through these materials. In the first 

example, Liam used his right hand in order to make a sideways motion. It is 

proposed that his hand represented the electricity and the sideways motion that he 

used his hand to make represented the movement of the electricity. Liam’s 

discussion continued and he produced another representational gesture; this one 

was interpreted as being used to show how he thought the particles in the material 

touched each other. Liam’s initial gesture which showed the sideways movement of 

the electricity was echoed later in Noel’s discussion when he made the same 

sideways motion across the front of his body in order to represent the movement of 

the electricity through the material (see transcript extract Table 44, Figure 39). 

 

Time Person Verbal Report Gesture 
12:04 RS What is it about that material do you 

think? 
 

 Janet I don’t know.  

 Liam Maybe it’s the particles inside of it.  
 Alisa They must be harder for it to travel 

through. 
 

 Liam They must be harder for it to travel 
through...cuz they are not as close 
together so they can’t hit each other 
as easily. 

As he says this Liam 
raises his right hand 
and makes a 
sideways sweeping 
motion, he then puts 
his hand back down 
onto the top of the 
table… As he speaks 
he raises both of his 
hands from the top of 
the table, holds them 
vertically (fingers 
pointing upwards) 
and slowly draws his 
hands close together 
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and then apart again. 
 RS Okay, you talked about particles 

there, what are particles? Or what 
do you think they are? 

 

 Liam They are like erm, little, erm 
particles. 

Laughs 

 RS Is everything made of particles?  
 Liam Yeah.  
12:45 RS And can you see them?  
 Liam No.  
 RS So how do you know that they are 

there? 
 

 Janet Cuz if they wasn’t there wouldn’t be 
anything cuz particles are what 
makes an object. 

 

 RS You also talked about particles not 
being so close together, why might 
that be important for whether or not 
electricity passes through? 

 

 Liam If they are close together it’s easier 
to pass through. 

 

 Noel If there is like a gap then they can’t 
get through. 

As he speaks Noel 
uses his right hand 
to make a slight 
sideways movement 
in front of his body. 

Table 44: Transcript extract showing how the Year 9 children use gestures in order 

to support their discussions of why conductivity occurs (RS = researcher). 

 

Figure 39: Liam’s representational gestures (Table 44). 

This particular discussion marked a critical moment within the activity where all of the 

children began to pull their ideas together and contributed to the generation of a 

more advanced concept. The discussion which focused on the placement of particles 
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in materials also offered insight into how these children work together in order to 

support the development and articulation of ideas. Janet initially proposed that she 

did not know why some materials were able to conduct electricity whilst other were 

not. However, Liam offered the argument that it was because of the particles inside 

the material and Alisa added to Liam’s ideas by suggesting that it made it harder for 

the electricity to pass through. Discussions such as these demonstrated how it was 

possible for the children to build on ideas and produce progressively more advanced 

explanations for scientific phenomena. What was clear from this extract was that 

none of the children disagreed with Liam’s proposal instead they supported his ideas 

and offered additional information to take his discussion further, in fact by the end of 

the extract all four children had contributed to this discussion equally.  

As the activity moved on the children demonstrated a high level of accuracy for 

sorting the materials according to whether or not they would conduct electricity or 

not, in this instance only one item is incorrectly proposed to conduct electricity. When 

the children are asked why they had decided to sort the materials in this way Janet 

proposed that the conductors were chosen because “they are metal”. Alisa 

confirmed this and stated that metal should work because it was like the wires and 

they conducted. When probed about why the plastic, rubber and wooden items had 

been placed on the insulator pile Liam responded by saying that he remembered 

from primary school. When asked to design an approach to testing the materials as a 

group, the children decided that they needed to keep the same circuit for all 

materials, that this circuit would contain one battery, one bulb and three wires, all of 

which would have been tested before beginning to try the materials and that they 

would observe the brightness of the bulb. The group adopted a scientific approach to 

testing the materials; they tried one item at a time and observed whether or not the 

bulb lit. Once tested, the children placed the items into new piles which had been 

allocated as conductors or insulators.  

Another significant moment within this group activity occurred as the researcher 

discussed parallel circuits. At first the children were unsure of what this was or what 

it meant. Evidence for this view can be drawn from the transcript extract (Table 45, 

Figure 40) in which it was possible to observe both Janet and Liam stating ‘no’. 

These two children did appear to share some non-verbal interaction. Noel stated that 

he thought that they have done one and his gesture appeared to supported this view. 



244 
 

Running his fingers across his eyebrow is resonant with typical thinking gestures that 

had already occurred during this study. The researcher demonstrated the circuit and 

then asked the children to predict what would happen to the bulbs if an additional 

one was added. As they did for the series circuit, all of the children predicted that the 

electricity would have to be shared between the bulbs and that they would appear 

dimmer.  

 

Time Person Verbal Report Gesture Other Non-
verbal 

17:45 RS Do you know what a parallel 
circuit is? 

  

 Janet No.  Janet rolls her 
eyes, and then 
smiles all of the 
others look 
towards her. 

 Liam No.  Liam looks 
down at the 
table and 
smiles. 

 Noel I think we have done one. Noel pulls his 
right hand up to 
the side of his 
face and runs 
his fingers 
across his 
eyebrow. 

 

Table 45: Year 9 transcript extract showing group sharing gestures during their 

discussion of parallel circuits (RS = researcher).  

 

Figure 40: Janet and Noel’s social gestures (Table 45) and Alisa’s referential gesture 

(Table 46). 
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Once these predictions were elicited from the group the children were invited to add 

another bulb in parallel and then explain the results. The children’s ideas were 

captured in the transcript extract (Table 46). This extract provided evidence of how 

this group of children progressively built on the concepts introduced during this 

discussion in order to generate a more complex framework of ideas. 

 

Time Person Verbal Report Gesture 
19:22 Alisa Cuz the powers still being released. Alisa points to the circuit 

in front of her. 
 Janet Cuz it’s like…  
 Noel I don’t know.  
 Janet The electricity is being, the same 

amount of electricity is being used, 
it’s just going up and down and they 
are all getting the same amount 
because they are connected to each 
other kind of. 

As she speaks Janet first 
points to the circuit and 
then uses her left hand 
to make a up and down 
motion that runs the 
length of the circuit as 
she stops speaking she 
looks at the RS and 
smiles. 

Table 46: Transcript extract from Year 9 group discussing their ideas about a parallel 

circuit. 

 

Finally, in this particular group study there was strong evidence of a change in ideas 

resulting from the conceptual challenge aspect of the task. With this group of 

children, their ideas for what electricity was were revised from it being a “form of 

energy” to it being “electrons pushed round a circuit to power things”. The overall 

frameworks for electricity understanding did not appear to change but the children 

did incorporate new information that appeared to play a central role to their 

understanding of what electricity was. Notably at the beginning of the science activity 

the children were aware that electricity was a form of energy that powers things but 

what form this energy took was undefined. By the end of the activity the children all 

appeared to be incorporating an awareness of electrons into their ideas thus 

providing a definition for what the characteristics of the form of energy involved. 

When probed for whether they thought that the use of the smarties to represent 

electrons had been different to their existing ideas, Liam proposed that it was indeed 
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similar, but all of the children agreed that the demonstration had helped them to 

understand what was happening in a circuit. It was this acknowledgement that may 

have helped the children to use the information drawn from the analogy in order to 

further develop their own ideas (transcript extract Table 47). 

 

Time Person Verbal Report Gesture Other Non-
verbal 

24:00 RS Okay so is that similar to what 
you thought might be 
happening within the circuit or 
is it different? 

  

 Liam I would say it is similar to what I 
thought was happening. 

Liam nods his 
head. 

 

 RS Yeah, do you all agree?  The children all 
nod. 

 RS Does that help you to 
understand what is happening 
in that circuit? 

  

 Noel Yeah.  The others nod 
their heads. 

Table 47: Transcript extract from Year 9 showing the group’s response to the 

conceptual challenge aspect of the activity (RS = researcher). 

 

In terms of the success of the approach taken within this study which explicitly aimed 

to challenge children’s ideas in order to observe how they may begin to change once 

challenged this particular group study was particularly useful. The results 

demonstrated the effectiveness of the conceptual challenge aspect of the task and 

the information from this group was used in order to conduct a more thorough 

timeline analysis exploring the development of conceptual ideas about electricity 

over the course of the activity (see section 6.5 for further details). 

 

6.5 Mapping Conceptual Change across an Activity 

 

In order to explore in more detail the way that the children’s ideas changed within the 

context of the practical science activities a timeline analysis was conducted on the 

Year 9 group study data. The timeline analysis was developed from the work of Givry 

and Tiberghein (2012) as discussed in Chapter 5. The aim of this analysis was to 



247 
 

map each new concept that the children discussed across the course of the activity 

in order to pinpoint moments of change as they happened. The Year 9 group were 

selected as they showed clear evidence of a change in concepts between the 

beginning and the end of the science activity, notably this group revised their ideas 

about what electricity was from a “form of energy” to “electrons being pushed around 

a circuit to power things”. This group also has a number of interesting interactions 

and showed evidence of generating new ideas between them.  

The timeline analysis detailed in Figure 41 shows the new ideas that were presented 

by the children during the activity. In order to show how these ideas developed over 

time the concepts are linked to the initial child who proposed them and the timeline 

across the bottom shows when these new ideas appeared. When initially probed for 

their ideas the timeline shows that Janet initially discussed electricity in terms of 

power. The children discussed how electricity powers things including light bulbs, 

when probed for what kind of power electricity is Janet linked the idea of power to 

the additional concept of energy. This link between these two ideas was continued 

until around two minutes into the activity when the children had completed their 

diagrams and were asked to provide an overview of what they thought was 

happening in the circuit in order to make the bulb light. It was at this point that Liam 

introduced the notion that energy is passed through the wires to make the light from 

the bulb. This idea was further developed by Alisa who introduced the new concept 

of conduction in order to explain the process of electricity being passed through the 

wires. Subsequently, Noel added to this conceptual map by proposing that electricity 

was also passed back to the battery. In this 7 minute interval it is possible to see how 

the children move from a conceptual structure which contains one idea, to a two idea 

structure, then a three which contains the exclusion of one concept and the 

introduction of two new ideas. This is subsequently altered to a two concept structure 

which introduces a new principle that aims to explain the phenomena initially 

proposed and then a further three concept structure which extend these ideas 

further. 

The next time window, 11 – 17 minutes into the activity, captures the ideas that are 

produced when the children begin to consider the concept of conductivity in more 

depth. It is at this point in the activity that Liam builds on previous ideas about 

electricity in order to produce a more complex four concept for conduction. As can be 



248 
 

observed in the timeline diagram, Liam links the ideas of energy and its ability to 

pass through materials to the concept of the underlying particle arrangement within 

the material. He proposes that it is the distance between the particles that the 

material is made of that influence whether or not something will conduct the energy. 

It is at this point that the first network of four ideas is produced and this begins to 

reveal the complexity of the conceptual structure that these children have for 

electricity. The network of four ideas is partially revised by Noel who discusses the 

particles arrangement found in different materials in terms of both conduction (when 

the particles are close together) and insulation (when the particles are far apart).  

The children all appear to support and apply this network of four ideas throughout 

the next part of the activity and revisions are only made once the children move into 

the 17 – 24 minute stage of the activity. Here there is further evidence from Liam that 

he is still developing the way that he views the movement of electricity, notably he 

now can be seen to link the energy that he associates with electricity and a ‘flow’ 

movement. The introduction of the term flow appears to reveal more about the way 

that he thinks the electricity moves, whilst previously he has talked in terms of 

passing the idea of flow can be interpreted as being something distinctly different, 

e.g. when water flows it moves as a body which is generally pushed by some force, 

whilst passing can be an isolated movement of an object which is propelled by some 

internal forces as well as a pushing force from behind. It is suggested that perhaps 

the most interesting changes in the children’s conceptual structure appear once their 

ideas have been challenged using the smarties analogy. Here the children are 

encouraged to act out the role of the electrons in a circuit; they carry the smarties 

(which are used to represent the energy that is generated within the battery) around 

the circuit. The researcher encourages the children to think in terms of being pushed 

as there are additional electrons which are being pushed out the battery and in term 

move them forward. Once this activity is complete the children are told the story of 

Volta and his invention of the first battery, this is used for two reasons, firstly it 

helped to add further context to the activity, and secondly, this allows space between 

the researcher’s presentation of the analogy and the final probe of science ideas. In 

this particular group of children by the 25 minute timescale it is possible to observe 

Liam generate a new and previously unused network of three ideas in his final 

definition of what he thinks electricity is.  
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Liam links the idea of electrons, a concept that the children had not previously used 

at all during the activity, with the ideas of being pushed around a circuit. It is 

interesting to note that this network of three ideas appears to contain the notion that 

the movement of the electrons is heavily influenced by other factors in the circuit and 

the introduction of the term circuit acknowledges the importance of the connection 

between the wires and the bulb and the way that this system operates as a whole. 

Whilst it is not possible to comment on whether this new network of three ideas 

remains consistent over time, within this context of this particular activity the 

appearance of this new network of ideas appears to show evidence of a radical form 

of conceptual change whereby the central concept is altered from that of power / 

energy (as shown in the timeline at 0 – 2 minutes) to electrons being pushed around 

a circuit (as shown at 25 minutes in the timeline). Results such as these were 

strongest within the Year 6 and Year 9 groups. Interestingly although the Year 2 

children participated in exactly the same activities they did not incorporate any of the 

new ideas presented into their subsequent discussions of what they thought 

electricity. Evidence of change was, however, was evident with the Year 6 and Year 

9 groups, with changes appearing to occur at both a weak and radical level. 
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Figure 41: Timeline analysis for the Year 9 group data.
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 6.6 Discussion 

 

The results of the multimodal analyses of data from the three groups support the 

notion that a multimodal approach can be used effectively in order to explore 

children’s ideas about electricity. The results also revealed that additional information 

on the children’s ideas can be gained from the analysis of gesture and that these 

gestures do reveal important information about ideas that is not transmitted in 

speech or written language or other mean (e.g. drawings).  

 

Further to this, evidence from a Year 6 group demonstrates the importance of 

adopting the multimodal approach to understanding children’s ideas more fully. One 

critical analysis of the Year 6 children’s responses to the electricity tasks revealed 

that children did not necessarily apply their frameworks for electricity consistently 

across all of their responses and many children changed the framework that they 

used when they were asked to pass comment on what would happen if an additional 

bulb were added to the circuit and why they thought this would happen. In a minority 

of cases the children used less scientific models in their responses to the more 

complex questions and tasks. In other cases the children used more complex and 

scientific explanations. It was the following case study that highlighted this 

inconsistency between the applications of models depending on the context of the 

question.  

Daniel was a Year 6 participant, he played a very active and vocal role in the group 

activity and readily shared his ideas. He also frequently used gestures alongside his 

verbal responses. Daniel’s gestures were particularly revealing as they showed that 

he applied two different frameworks for his understanding of electricity depending on 

the number of bulbs that were to be included in the circuit. In the transcript extract 

below (Table 48), Daniel applied the closed circuit model in both his verbal and non-

verbal responses. Daniel’s gesture demonstrated a slow movement around the 

circuit in a circular motion (Figure 42). This particular gesture was typical of the non-

verbal approach to demonstrating how electricity moves around a circuit in one 

direction from battery to bulb and then back to the battery. In his verbal response 

Daniel stated that electricity passed through the wires and in turn through the 

different metal components in the circuit. His verbal responses were supported by 
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his non-verbal gesture. Another participant, Chris, uses a similar non-verbal gesture 

to also demonstrate this understanding of how electricity moves in the circuit.   

 

Time Person Verbal Response Gesture Other Non-
Verbal 

 Daniel The electricity is passing through 
the wires to the metal and 
electricity passes through metal 
which is travelling through more 
metal which is travelling through 
more metal 

As he speaks 
Daniel uses his 
right hand to make 
a slow movement 
which traces the 
wires around the 
circuit that his 
group has made 

 

 RS Does the electricity stay in the 
bulb or does it go somewhere 
else? 

  

 Chris It keep on going round and round As he says this 
Chris uses the 
index finger of his 
right hand to draw 
a continuous circle 
above the circuit 
that his group 
have made. As he 
completes this 
sentence his 
gesture stops 

 

 RS Okay. What would happen if I 
was to put another bulb in that 
circuit? 

  

 Isabelle Oh it wouldn’t be as 
bright...would you need two 
batteries...no 

  

 Daniel If...no wouldn’t you be fine 
because would electricity pass 
through each side of the battery 

As he says this 
Daniel places both 
of his hands either 
side of the battery 
and then slowly 
draws a path with 
each hand that 
follows the wires 
on either side of 
the circuit that his 
group have 
previously made 
and stops when 
they reach either 

As he is 
talking 
Daniel 
scrunches 
up his 
forehead 
and looks 
puzzled 
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side of the bulb in 
the circuit 

 RS Well what do you think? Do you 
think it will pass through each 
side? 

  

 Daniel I think it will   

 Tony That will just get duller cuz they 
will share the electricity 

Tony uses his left 
index finger to 
point to the bulb 
as he speaks 

 

 RS Does that always happen then? 
That if you put more bulbs into a 
circuit that they share the 
electricity that is already there? 

  

 Daniel Yeah  As Daniel 
speaks he 
scrunches 
up his face 
looking 
puzzled 

Table 48: Extract of the transcript from a Year 6 group electricity activity which 

shows Daniel applying two different frameworks of understanding once the context of 

the activity is changed. 

 

However, once the researcher asked the group what would happen in the circuit if an 

additional bulb was added Daniel changed the framework that he used to describe 

his understanding of electricity. The change occurred in both Daniel’s verbal and 

non-verbal responses, he proposed that the electricity would travel from each side of 

the battery, one side per bulb. A similar representation is observed in his non-verbal 

response, he drew two path gestures which began at the bulb, notably each hand 

traces a separate wire towards the existing bulb in the circuit (Figure 42). This verbal 

response and gesture is typical of a response that demonstrated a clashing currents 

model for electricity. In this instance it is proposed that Daniel’s understanding 

appeared to regress to a less scientific model than he had demonstrated before as a 

result of the task characteristics or context specificity elucidated during this probe. 

There is also evidence in Daniel’s other non-verbal behaviour that he is confused by 

this new aspect to the task (e.g. he scrunches up his face and appears puzzled). 
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Figure 42: Daniel and Chris’ representational gestures showing his ideas for how 

electricity works in a circuit. 

The timeline analysis adopted and developed during this work revealed itself to be 

useful for highlighting moments of change as they occurred. Interestingly, the Year 9 

children showed most evidence of conceptual change during the electricity activities 

and the timeline effectively captured these. This showed how the children moved 

from a single idea conception of what electricity is to a more advance three-concept 

idea.  

Overall, the results of the analyses revealed that, consistent with previous literature, 

the older children demonstrated most scientific and advanced concepts (Shipstone, 

1985; Osborne, et al., 1991; Borges & Gilbert, 1999). The older children were also 

more likely to change their ideas following tuition. However, the changes evident 

were not necessarily at framework level and often took the form of weak 

restructuring. There was some support for Karmiloff-Smith’s (1992) ideas of 

conceptual change found within the data (see Chapters 3 and 8). 
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Chapter 7 Children’s Ideas about Floating and Sinking (the 

Archimedes Principle): a multimodal perspective 

 

 

 

 7.1 Introduction 
 

In this chapter the analysis of, and findings from, the floating and sinking activities 

are presented and discussed. The results are structured according to both 

‘conventional’ approaches to studying children’s ideas and the new multimodal, task-

based approach in order to investigate what this approach adds to an understanding 

of the children’s ideas and how these change as a result of tuition.  

In the first part of the chapter, the analyses explore the content of the children’s 

drawings and written and verbal responses during interview. These are analysed 

using a ‘conventional’ approach. In all cases, content analyses were undertaken on 

the children’s individual worksheets (as discussed in Chapter 4) and the group 

transcripts drawn from the floating and sinking practical activities.  These permitted 

examination of the underlying frameworks of understanding that the children were 

using when discussing their ideas and structured around: 

• what floating is; 

• what sinking is; 

• what kind of objects float and sink and their properties.  

In the second part of this chapter, different aspects of the multimodal analyses are 

presented. Following transcription, the data were coded using NVivo in order to 

complete the multimodal analysis. NVivo offered a particularly powerful platform for 

this analysis by drawing together the transcripts from multiple cases and making it 

possible to trace coding across and within transcripts as discussed in Chapter 5. 

This more detailed level of analysis permitted the identification of the different types 

of gestures that children used as well as indicating the prevalence of these across 

the three age groups. In order to explore the utility of the storyboarding approach 
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detailed in Chapter 5, three group studies were conducted. Each group study was 

transcribed in full and the comparative analysis between the different response types 

was completed by hand. These storyboard analyses explored the ways that the 

children used different response types (e.g. drawings, written, verbal and gestures) 

in order to show their understanding during the activities and the way that the 

children’s ideas changed (if at all) during the course of the activities. Finally, in order 

to show how ideas developed during a single activity a timeline analysis was 

completed for one of the Year 6 groups, this group was chosen because their ideas 

appeared to have changed and they frequently used collaboration to generate new 

ideas as the activities progressed. This groups’ data were transcribed fully and 

coded by hand in order to capture the transition between the concepts that children 

were discussing during the activities. Finally in this chapter, the results to the 

activities are compared to previous research and the importance of studying gesture 

is assessed using the data collected during Research Phase 2. 

As highlighted in Chapter 3, floating and sinking has historically been studied less 

than electricity. Although less well studied in the research literature, floating and 

sinking is embedded within the National Curriculum for Key Stages 1- 4 in Materials 

and their Properties it also overlaps with Physical Processes at Key Stage 3 and 

above (DfEE & QCA, 1999). According to the guidance:  

• Key Stage 1 – pupils are taught to be able to sort materials into groups on the 

basis of properties including the ability to float; 

• Key Stage 2 – pupils are taught to compare objects and also receive tuition in 

physical processes such as gravity; 

• Key Stage 3 – pupils are taught about density, the particle theory of matter 

and about balanced forces; 

• Key Stage 4 – pupils are taught about the atomic structure of materials and 

receive further tuition on forces. 

As with electricity, children’s learning is measured in National Curriculum terms 

according to Attainment Targets which consist of 8 level descriptors of increasing 

difficulty, plus a description of what exceptional performance would be. The 
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attainment levels for each topic are available from the Department for Education. 

According to the DfEE and QCA (1999) children are expected to attain the following 

levels at the following ages (Table 49): 

 
Range of levels within which the great 
majority of pupils are expected to work 

Expected attainment for the majority of pupils 
at the end of the Key Stage 

Key Stage 1 1-3 At age 7   2 

Key Stage 2 2-5 At age 11   4 

Key Stage 3 3-7 At age 14 5/6 

Key Stage 4 National qualifications are the means of assessing attainment 

Table 49: The range of levels children are expected to work within and the expected 

attainment for the majority of pupils at the end of the key stages. 

The presence of floating and sinking specifically in the primary curriculum highlights 

that all of the children involved in this study will have received some form of tuition 

prior to undertaking the activities. However, for the older children it may have been 

some time since they had worked directly with such materials. 

 

 7.2 Traditional Approach to Analysing Children’s Ideas 
 

As detailed in Chapter 4, the following participants were recruited for the floating and 

sinking activities undertaken as part of Research Phase 2: 

 

• 19 children in Year 2 at Village Primary School; 

• 16 children in Year 2 at City Independent School; 

• 28 children in Year 6 at Village Primary School; 

• 16 children in Year 6 at City Independent School; 

• 14 children in Year 9 at Village Secondary School. 

 

The children completed the floating and sinking activities as detailed in Chapter 4, 

section 4.6. In summary these activities entailed the children first taking part in a 
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baseline test for their ideas about floating and sinking. This included a discussion of 

what they thought floating and sinking was, and drawing and sentence completion 

tasks. These tasks were followed with a problem solving activity where the children 

were asked to group materials (including cork, plastic, metals such as copper and 

steel and different types of wood) according to whether or not they thought that they 

would float or sink, develop an effective means of testing the materials and then 

discuss their results. Next the children were asked if they could mould plasticine in 

order to make it float, including when loaded with marbles. Children’s existing ideas 

were then challenged by pushing an inflated balloon into a tank of water so that they 

were able to observe the change in water level as the balloon displaced the water 

and feel the upthrust force on the balloon itself. Finally, the story of Archimedes’ 

discovery of how to explore the density of objects using water was discussed before 

the children took part in a final probe of their ideas. The researcher led all activities 

and was responsible for delivering the dialogic teaching.  Throughout the activities 

the researcher used a participant observation approach in order to judge when the 

appropriate time to ask specific questions was and in order to assess when the 

activities should be moved on. 

 

In order to explore children’s ideas in floating and sinking, a content analysis was 

conducted on the transcripts drawn from the floating and sinking practical activities.  

The analysis undertaken considered the content of the children’s drawings, written 

and verbal responses in order to uncover the underlying frameworks of 

understanding that the children had been using when discussing their ideas for why 

objects float and what characteristics objects require in order to be able to do this. In 

order to explore the way that the children’s ideas changed between the three age 

groups of children, a comparison of the features of children’s drawings was 

undertaken. This was followed by an analysis of the content of their written work and 

an analysis of the content of their verbal responses using the same comparative 

approach.  
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7.2.1 Children’s Drawings 
 

A qualitative content analysis of the children’s drawings was completed in order to 

explore how these changed over time.  In most cases, although there were 

exceptions, the drawings contained only two objects.  Typically across all age groups 

one object was drawn above or directly touching the water surface and one was 

drawn at the base of the tank usually touching the bottom (Figure 43 shows typical 

examples from the three age groups).  

 

Figure 43: The placement and type of objects that the three different age groups of 

children drew before completing the floating and sinking activity. 

 

The range of objects that were drawn varied but there were some emerging themes. 

Floating objects included boats, ducks, balloons and people, whilst sinking objects 

included bricks, blocks and rocks.  Interestingly as the age of the children increased 

the drawings were more likely to contain identical objects in both the floating and 

sinking positions, perhaps indicating that as children get older they become more 

aware that the surface characteristics of the object (e.g. what they look like from the 

outside cannot always be used to decide whether an object will float or sink (Figure 

43).   

In order to facilitate an analysis of variation across age groups regarding the 

placement of objects the distribution scores across each age group is presented in 
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Table 50. As demonstrated in Table 50 the location of the floating object was most 

frequently placed on the top of the water with none of the Year 9 participants placing 

the floating object above the water surface. Interestingly, no participants drew the 

floating object under the surface of the water, perhaps indicating that when children 

are considering floating objects they prefer those which sit at the top of the water. 

However, when the children were probed as to whether floating objects could appear 

in other locations all of the children agreed that it was possible for some objects to 

float in the middle of the water (e.g. completely submerged beneath the surface but 

not touching the bottom). Importantly, these results may be subject to context effects 

and perhaps if the children had been specifically asked about submarines they may 

have considered or provided different responses. 

 
 
Location of Floating Object (s) 
Age On top of water surface Above the water surface 
Year 2 
(N = 35) 

N = 28  
(80%) 

N = 7  
(20%) 

Year 6 
(N = 44) 

N = 38  
(86%) 

N = 6  
(14%) 

Year 9 
(N = 14) 

N = 14  
(100%) 

N = 0  
(0%) 

 
Location of Sinking Object (s) 
Age On the base of the tank Above the base of the tank 
Year 2 
(N = 35) 

N = 13  
(37%) 

N = 21  
(60%) 

Year 6 
(N = 44) 

N = 31 
(70%) 

N = 13  
(30%) 

Year 9 
(N = 14) 

N = 11  
(79%) 

N = 3  
(21%) 

Table 50: The distribution of the different locations for the floating and sinking objects 

produced by the different age groups of children in the study. (* Some Year 2 

children did not include a sinking object in their drawings.) 

 

The results of the drawing location of the sinking object revealed less consistent 

results. The youngest children most frequently drew the sinking object above the 

base of the tank (N=21; 60%), however, in the older children both Years 6 and 9 the 

location of the sinking object was most frequently placed touching the base of the 

tank. Overall the results revealed a clear distinction between the two terms (e.g. 

floating was represented at the surface of the water whilst sinking was located at the 
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bottom). The results also revealed some age related changes with older children 

drawing objects that were less distinguishable in both floating and sinking positions. 

 

7.2.2 Children’s Written Responses 
 

Qualitative content analyses of the written responses generated by the children 

across the different age groups revealed striking differences in the type of reasons 

given for why things float or sink.  Notably, younger Year 2 children (7 years) 

frequently did not complete the written task at all (N=16; 46%). Of those that did the 

majority discussed weight as a factor. A total of five different explanations for why 

things float and sink were evident within this group (see Figure 44).  

 

Figure 44: The different written explanations that Year 2 children (7 years of age) 

give for why things float or sink. 

 

In terms of the ideas discussed it is proposed that discussions of weight represented 

the most intuitive idea that the children held and also the most concrete. In contrast 

some children presented more advanced scientific ideas including in their 

discussions the notions of upthrust and buoyancy, these ideas can also be 

considered to be more abstract.  
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In contrast, children in Year 6 (10 and 11 years of age) more frequently provided a 

written response to the questions with only 6 children (14%) failing to provide a 

written answer. Responses at this age included a wider range of variability than 

those provided by the Year 2 children.  Some children still discussed the weight of 

the object as a critical factor whilst other explanations included size, the presence of 

holes in the material, whether the object is airtight, the ability to balance on the water 

and gravity (see Figure 45 for further details).  

 

 

Figure 45: The different written explanations that Year 6 children (11 years of age) 

give for why objects float or sink. 

 

As with the younger children, the Year 6 children included both intuitive and scientific 

ideas as well as those that were concrete and abstract. Intuitive ideas still included 

aspects linked to the weight of the objects and in concrete terms children discussed 

the presence of holes as one important factor. In contrast some Year 6 children 

included a discussion of forces in their written responses, such concepts are more 
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scientific and abstract in form. Interestingly, none of the Year 6 children discussed 

ideas such as upthrust and buoyancy.  

The children in Year 9 (14 years of age) all provided written responses. These 

responses demonstrated extensive variability with some children still indicating that 

the weight of the object was important for whether things float or sink.  However, at 

this age it was noted that children’s ideas appeared to shift from an object-centred 

frame to one which included both the characteristics of the object and the 

characteristics of the liquid in which the object was placed, thus demonstrating more 

advanced scientific concepts.  Explanations provided included factors such as water 

displacement, density of the object, the object’s weight in comparison to the liquid, 

and the object’s ability to be ‘lifted’ by the water based on its weight (Figure 46). 

 

 

Figure 46: The different written explanations for floating and sinking that were 

generated by Year 9 children (14 years of age). 

 

As with the younger children there was still some presence of intuitive and concrete 

concepts such as air in objects being a factor which is important for helping items to 

float. In contrast, scientific concepts included the weight of the object in proportion to 
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the water and the most abstract concept included a range of ideas such as the 

presence of air in the objects, water displacement and the density of the object.  

Taken as a whole the ideas that were provided in the written responses to the 

worksheets demonstrated an interesting pattern of responses. Initially, the younger 

children appeared to produce just five different themes within their written responses. 

However, as children got older more variation in the written responses appeared; 

with the Year 6 children producing 15 different themes and the Year 9 children 

producing 10. It is interesting to note that whilst the weight of the object was the most 

popular theme emerging from the analysis of the youngest children’s written ideas, 

this theme became combined with other explanations in the older children and its 

occurrence reduced substantially across the older groups. For example, the Year 6 

children discussed the material properties of the objects (e.g. the thickness of the 

material or the presence of air as well as their weight).  

 

7.2.3 Children’s Verbal Responses 
 

Throughout the activities presented all of the children responded to a range of verbal 

probes designed to uncover their ideas about floating and sinking. These probes 

included: 

• What do you think floating is? 

• What do you think sinking is? 

• What kind of things float? 

• Why do you think these things float? 

• What kind of things sink? 

• Why do you think these things sink? 

An initial analysis comparing the themes that emerged for what the children thought 

about floating and sinking was undertaken. The results of this analysis are shown 

below in Tables 51 and 52. The results for floating revealed that the youngest age 

group (Year 2) most frequently associated floating with the position of the object in 
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the water. The Year 6 children also often discussed the position of the object but 

also suggested that weight was a factor and that they thought floating might have 

something to do with forces. However, when probed they were unsure of what these 

forces were. Some Year 9 children still referred to the position of the object in the 

water but others did suggest that they thought that floating occurred when an object 

displaced more water than its weight. As with the written responses the data 

presented in Table 51 appears to show that in the youngest children only a few 

themes occurred, as the age of the children increases more ideas are evident, the 

number reduced again in the older children. It is proposed that the youngest children 

(Year 2) demonstrate the most intuitive and concrete ideas by attending merely to 

the actual location of the object in the water. The older children (Year 9) appeared to 

use the most abstract and scientific ideas and stated that floating was when an 

object displaced more water than its weight. 
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What is meant by floating? 
 

Year 2 
 
(N = 35) 

Year 6 
 
(N = 44) 

Year 9 
 
(N = 14)  

Is not sinking   2 
(14%) 

Staying up 3 
(9%) 

4 
(9%) 

 

Things that go above the water surface  5 
(11%) 

6 
(43%) 

Staying at the top of the water 12 
(34%) 

5 
(11%) 

 

Things sitting at the surface of the water 
(but not always) 

 16 
(36%) 

 

Staying at the top or sometimes in the 
middle of the water 

20 
(57%) 

4 
(9%) 

 

When light things stay at the top  5 
(11%) 

 

To do with forces  5 
(11%) 

 

If something doesn’t go under the water   3 
(21%) 

Is something displacing more water than its 
weight 

  3 
(21%) 

Table 51: A theme analysis of the children’s responses to what they thought floating 

was at the beginning of the activity. 

The emerging themes in the children’s verbal responses for what they thought 

sinking was revealed that the younger children (Year 2) most frequently associated 

this with the downward motion of an object through the water. In Year 6, many 
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children also discussed the motion of the object but others discussed the role that 

gravity played. Some of the Year 9 children discussed the downward motion but they 

also incorporated discussions of the weight of objects and the ability of an object to 

displace water (Table 52).  It is proposed that the content of these verbal responses 

reveals a pattern of concept development which demonstrates that the youngest 

children apply the most intuitive and concrete ideas whilst the older children apply 

the most scientific. 
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What is meant by sinking? 
 

Year 2 
 
(N = 35) 

Year 6 
 
(N = 44) 

Year 9 
 
(N = 14) 

Going down slowly 3 
(9%) 

  

Things that go completely under the 
water 

 5 
(11%) 

 

When an object goes straight to the 
bottom 

4 
(11%) 

 7 
(50%) 

Movement through the water to the 
bottom 

28 
(80%) 

25 
(57%) 

2 
(14%) 

When objects are heavy so they go to 
the bottom 

 5 
(11%) 

2 
(14%) 

Gravity making heavy objects sink  5 
(11%) 

 

Falling or being pulled by gravity  4 
(9%) 

 

When an object cannot displace 
enough water equal to its weight 

  3 
(21%) 

Table 52: A theme analysis of the children’s responses to what they thought sinking 

was at the beginning of the activities. 

 

In order to further reduce the vast quantity of verbal data so that meaningful 

comparisons could be made across the age groups it was necessary to develop a 

framework system for the different ideas that children demonstrated.  
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7.2.4 The Development of a Framework System about Floating and 

Sinking 

 

In order to further analyse children’s ideas about floating and sinking, a framework 

structure of children’s responses informed by recent research by Havu-Nuutinen 

(2005, see Chapter 3) and further developed through the content analysis of the 

written and verbal responses made by the participants in the current study (see 

Table 53).  It is important to note here that whilst Havu-Nuutinen’s work has 

identified a range of different aspects that children may include in their discussions of 

floating and sinking, for the purposes of this study these categories were too broad 

to capture the differences between the children and therefore these were extended 

to include more categories. In order to permit a cross-age analysis of children’s ideas 

so that the potential changes that take place over time in frameworks could be 

explored, each child’s response was assessed using the framework categories 

identified in Table 53. 

The frameworks were used in order to categorise the ideas that children discussed in 

their verbal responses to probes used at the beginning of each floating and sinking 

activity. The content of children’s responses was used as a basis for the 

categorisation and where the groups of children reached a joint consensus all 

members of the group was allocated to the same category. 

The distribution of the categories across the age groups of participants is shown in 

Table 54. Interestingly, some of the ideas revealed in the written responses rarely 

occurred individually as verbal responses, for example, although children in Year 6 

sometimes wrote about surface tension as a factor which influences whether or not 

objects float or sink but they never discussed this factor in their verbal responses. 

The same was true of upthrust and buoyancy which was included in some of the 

Year 2 children’s written responses but did not feature in the children’s other work. 

Overall, the framework analysis revealed that the Year 2 children most frequently 

attended to the material properties of the object when discussing floating and sinking 

and what kind of object would float. In particular, the weight of the object appeared to 

be the most important aspect for consideration in this age group (N = 27; 77%). Only 

3 of the children in this age group considered the properties of the liquid in which the 

object was to be floated as well as the properties of the object.  
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Primary Framework 
 

Secondary 
Framework 

Category 
 

Non-Relevant and Non-Scientific  
No physical properties are mentioned or the 
responses are not relevant to floating and 
sinking 

 1 

Object (Material) Properties 
Focuses on the physical properties of the 
objects  

 
 
Weight 
Air (presence in object) 
Shape 
Surface area  
Density 

2 
 
2a 
2b 
2c 
2d 
2e 

Liquid Properties 
Focuses on the properties of the liquid in 
which the objects are placed 

 
 
Amount of Liquid 
Surface Tension  
Density 

3 
 
3a 
3b 
3c 

Forces 
Focuses on the forces that act on either the 
object or the liquid 

 
 
Gravity 
Upthrust / Buoyancy 

4 
 
4a 
4b 

Combination Framework 
Incorporates elements of the three 
frameworks identified above 

 
 
Object (material) 
properties + Liquid 
Properties 
 
Object (material) 
properties + Forces 
 
Liquid Properties + 
Forces 
 
Object (material) 
properties + Liquid 
Properties + Forces 

5 
 
 
5a 
 
 
5b 
 
 
5c 
 
 
5d 

Table 53: The possible frameworks of children’s ideas for floating and sinking that 

are evident within the participant groups taking part in this study. 

 

The results of the analyses of the Year 6 children’s verbal responses revealed that 

by this age there was far greater diversity in the responses that the children 

revealed. Weight of the object was still considered important for some of the children 

(N = 12; 27%) but other factors such as the presence of air were also frequently 

discussed (N = 14; 32%). Within this age group there was evidence of greater 

consideration of forces as a factor. Interestingly, at this age no children discussed 
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the link between the properties of the liquid alongside their discussion of the material 

properties of objects.  
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Category 
 

 
Year 2 
(N = 35) 

 
Year 6 
(N = 44) 

 
Year 9 
(N = 14) 

1 
Non-Relevant and Non-
Scientific 

   

2 
Object (Material) Properties 

4  
(11%) 

2  
(5%) 

 

2a 
Weight 

27  
(77%) 

12  
(27%) 

1  
(7%) 

2b 
Air 

1  
(3%) 

14 
 (32%) 

3  
(21%) 

2c 
Shape 

 6  
(13%) 

 

2d 
Surface Area 

 1 
 (2%) 

 

2e 
Density 

   

3 
Liquid Properties 

 1  
(2%) 

 

3a 
Amount of Liquid 

   

3b 
Surface Tension 

   

3c 
Density 

   

4 
Forces 

 4  
(9%) 

 

4a 
Gravity 

 2  
(5%) 

 

4b 
Upthrust / Buoyancy 

 2  
(5%) 

1  
(7%) 

5 
Combination Framework 

   

5a 
Object + Liquid 

3  
(9%) 

 5  
(36%) 

5b 
Object + Forces 

  4  
(29%) 

5c 
Liquid + Forces 

   

5d 
Object + Liquid + Forces 

   

Table 54: The distribution of the different floating and sinking frameworks across the 

different age groups of participants. 

The combinations frameworks were most prominently discussed by the oldest group 

of children, Year 9, but even at this stage some children (N = 4; 28%) still attended 
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only to the material properties of the objects in their discussions. However, at this 

age children more frequently discussed forces such as gravity and upthrust.  

Overall the results appear to support the notion that there is a general trend from 

intuitive and concrete ideas to those that are more scientific and abstract as the 

children get older. Indeed it was the oldest children who were the most likely to 

discuss ideas that were not necessarily directly observable such as forces. As with 

the written responses and the theme analysis there was evidence of only 4 different 

frameworks in the Year 2 children’s data, 9 different frameworks were evident in the 

Year 6 children’s data and 5 different frameworks were evident in the Year 9 data. 

These finding may represent an overall general trend where children begin with a 

few ideas, which are then extended to include more aspects before becoming 

reduced to more complex but less variable responses later. However, it is also 

important to consider that this finding may have been due to the lower number of 

participants at Year 9 level. With reference to the previous research detailed in 

Chapter 3, there appeared to be evidence that as previously indicated the children’s 

ideas about floating and sinking become more scientific over time and the children 

begin to appreciate that whether or not something floats or sinks may be influenced 

by a range of factors which include weight but also include aspects related to the 

liquid. 

 

7.2.5 A Comparison between Children’s Drawings, Written and 

Verbal Responses 
 

A comparison between the drawings, written and verbal responses that children 

generated when asked to draw, write or comment why some things float and some 

sink revealed that for the younger children (Year 2) whilst they found it easy to 

complete the drawing task (e.g. place one object in a floating and one object in a 

sinking position) there was a disparity between the contents of their verbal 

responses and the contents of what they had written.  The written responses on the 

worksheet discussed above demonstrated that children frequently failed to write any 

response and those that did focused their discussions on the weight of the object as 

the most important factor.  In contrast, verbal responses to probes asking children to 

discuss why they thought things float and sink revealed that children of this age 
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whilst still adopting an object-centred frame also considered some additional 

features including the presence of holes in object, the presence of trapped air inside 

the object, and the material that objects are made of.  As with the younger children 

all of the Year 6 and the Year 9 children found it easy to complete the drawing task. 

The difference between the content of written and verbal responses was reduced 

within the Year 6 children, and was not evident in the responses of the Year 9 

children, suggesting that there may be an age effect related to the writing process 

rather than the underlying frameworks that the children hold.  It could be suggested 

that the demands of the written task make this element of the worksheet more 

difficult for the younger children to complete and because of this, although the 

children may hold these ideas they may find it difficult to put these on paper.  

 

7.2.6 Changing Children’s Ideas  
 

As with electricity the floating and sinking activities included a conceptual challenge 

element, namely the demonstration of upthrust and water displacement by pushing 

an inflated balloon into the tank of water. A second thematic analysis was conducted 

on the children verbal responses for what they thought floating and sinking was at 

the end of the work. The results of this analysis for floating (see Table 55) revealed 

that the younger children (Year 2) still focused their discussions on the position of 

the object in the water as they had done at the beginning of the activity. Thus, 

although the children had appeared to accept the information given in the conceptual 

challenge aspect of the task and, in some cases, although they had discussed this at 

the time, they had not incorporated these new ideas into their responses by the end. 

Whilst many of the Year 6 children still discussed the position of the object in the 

water, many now discussed the role of forces and in some cases the children named 

the balance between upthrust and gravity as important. These findings appear to 

support the view that the Year 6 children had begun to incorporate new information 

drawn from the conceptual challenge aspect of the task into their ideas, thus 

demonstrating that for this age group the activity was successful. Similar findings 

were observed in the Year 9 children, with many children now discussing forces in 

their explanations. Thus, this age group successfully demonstrated more scientific 

aspects of conceptual change in their ideas. 
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What is meant by floating? 
 

Year 2 
(N = 35) 

Year 6 
(N = 44) 

Year 9 
(N = 14)  

 Before After Before After Before After 
Not sure      2 

(14%) 

Is not sinking     2 
(14%) 

 

Staying up 3 
(9%) 

3 
(9%) 

4 
(9%) 

   

Things that go above the water 
surface 

  5 
(11%) 

 6 
(43%) 

 

Staying at the top of the water 12 
(34%) 

28 
(80%) 

5 
(11%) 

16 
(36%) 

  

Things sitting at the surface of the 
water (but not always) 

  16 
(36%) 

   

Staying at the top or sometimes in 
the middle of the water 

20 
(57%) 

4 
(11%) 

4 
(9%) 

   

When light things stay at the top   5 
(11%) 

   

To do with forces   5 
(11%) 

   

If something doesn’t go under the 
water 

    3 
(21%) 

 

The water holding something up    5 
(11%) 

  

Force pushing object up    13 
(30%) 

  

Upthrust is more than gravity      4 
(29%) 

Upthrust and gravity are equal    10 
(23%) 

 3 
(21%) 

Is something displacing more water 
than its weight 

    3 
(21%) 

5 
(36%) 

Table 55: A theme analysis of children’s ideas for floating as measured before and 

after the conceptual challenge element of the study. 

Overall the results of the analysis appeared to reveal a trend where the older 

children appeared to incorporate the more advanced scientific ideas into their 

discussions. The Year 6 children appeared to have learned the most from the 

activities, however, it is also striking that 9 of the Year 9 children had now begun to 

discuss forces such as gravity and upthrust in their verbal responses. 

The thematic analysis for children’s ideas about sinking as measured at the end of 

the activity also revealed that the younger children (Year 2) still used similar 

description to those provided at the beginning of the activities (Table 56). Suggesting 

that despite the conceptual challenge aspects of the activities the younger children 

still perceived that sinking was defined by the movement of the object through the 

water to the bottom.   
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What is meant by sinking? 
 

Year 2 
(N = 35) 

Year 6 
(N = 44) 

Year 9 
(N = 14) 

 Before After Before After Before After 
Going down slowly 3 

(9%) 
3 
(9%) 

    

Movement through the water to the 
bottom 

28 
(80%) 

28 
(80%) 

25 
(57%) 

16 
(37%) 

2 
(14%) 

 

Things that go completely under 
the water 

  5 
(11%) 

   

When an object goes straight to the 
bottom 

4 
(11%) 

4 
(11%) 

  7 
(50%) 

 

When objects are heavy so they go 
to the bottom 

  5 
(11%) 

5 
(11%) 

2 
(14%) 

 

Object is too heavy for surface 
tension to hold it 

     4 
(29%) 

Gravity making heavy objects sink   5 
(11%) 

   

Falling or being pulled by gravity   4 
(9%) 

9 
(20%) 

 2 
(14%) 

Gravity pushing object down    5 
(11%) 

  

Upthrust is not enough    4 
(9%) 

  

Gravity greater than upthrust    5 
(11%) 

 3 
(21%) 

When an object cannot displace 
enough water equal to its weight 

    3 
(21%) 

3 
(21%) 

When the density of the object is 
more than the density of the liquid 

     2 
(14%) 

Table 56: A theme analysis of children’s ideas for sinking as measured before and 

after the conceptual challenge aspect of the activities.  

 

In contrast, the Year 6 children had begun to include discussions of forces including 

upthrust and gravity in their responses. These results suggest that  following the 

conceptual challenge aspect of the task some of the children were able to adapt their 

ideas in order to incorporate more scientific aspects. A similar finding was evident in 

the responses from the Year 9 children, some of whom now discussed forces and 

the importance of these for defining what sinking is. Taken as a whole, these results 

suggest that the conceptual challenge aspect of the task was most successful for the 

Year 6 and Year 9 children, both years incorporating new information into their 

existing ideas by the end. For some of the children this included a change in the 

framework that they applied to the task, thus demonstrating evidence that might be 

considered to be a form of radical restructuring, whilst for other children these 

changes signified weak restructuring and no change in the overall frameworks 

applied. 
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Critically, however, it is important to highlight that whilst there was some evidence of 

change in the definitions that children applied when discussing their ideas, a study 

such as this only provides a snapshot of a specific point in time and it is not possible 

to discuss whether these changes are long lasting or if they were simply 

instantaneous. When the age groups of children were compared however, it was 

possible to highlight evidence of both weak and radical changes in ideas between 

the age groups. As discussed before, the younger children appeared to focus solely 

on the weight of the object, whilst the older children begin to incorporate information 

such as the size and shape of objects which perhaps could be demonstrating 

evidence of weak restructuring or early precursor ideas regarding density. These 

findings appear to be consistent with work such as Piaget’s (1958) who proposed 

that older children more readily incorporated more scientific ideas in their 

discussions. 

In order to further explore any changes that may have been made to the children’s 

ideas an evaluation of the frameworks applied during the final probes to the tasks 

was undertaken. This data is detailed in Table 57. As indicated the results revealed 

that the Year 2 children demonstrated no evidence of framework change between 

the beginning and the end of the activities, their ideas remained consistent and 

focused on the object properties such as the weight and the presence of air in 

objects. The Year 6 children demonstrated some movement between the 

frameworks, most notably at the beginning of the activities the majority of the 

children clustered around the object properties frameworks, by the end of the 

activities however, the majority of the children (N = 26; 59%) were applying a forces 

framework and some children (N = 4; 9%) were using combination frameworks which 

included discussion of both forces and object properties. This evidence suggests that 

the children’s ideas about floating and sinking were becoming more advanced and 

scientific by the end of the tasks. A shift in the frameworks applied was also evident 

in the older children’s ideas (Year 9). Whilst at the beginning of the tasks 4 of the 

children held frameworks that attended to object properties such as weight and the 

presence of air, these ideas were no longer present at the end of the tasks and all of 

the children’s ideas were contained in more advanced and scientific frameworks 

such the forces or in combination object and liquid properties. 
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Framework 
Category 
 

 
Year 2 
(N = 35) 
 

 
Year 6 
(N = 44) 

 
Year 9 
(N = 14) 

 Before After Before After Before After 
1  
Non-Relevant and Non-
Scientific 

      

2 
Object (Material) 
Properties 

4 
(11%) 

4 
(11%) 

2 
(5%) 

   

2a 
Weight 

27 
(77%) 

27 
(77%) 

12 
(27%) 

2 
(5%) 

1 
(7%) 

 

2b 
Air 

1 
(3%) 

1 
(3%) 

14 
(32%) 

12 
(27%) 

3 
(21%) 

 

2c 
Shape 

  6 
(14%) 

   

2d 
Surface Area 

  1 
(2%) 

   

2e 
Density 

      

3 
Liquid Properties 

  1 
(2%) 

   

3a 
Amount of Liquid 

      

3b 
Surface Tension 

      

3c 
Density 

      

4 
Forces 

  4 
(9%) 

   

4a 
Gravity 

  2 
(5%) 

   

4b 
Upthrust / Buoyancy 

  2 
(5%) 

26 
(59%) 

1 
(7%) 

5  
(36%) 

5 
Combination 
Frameworks 

      

5a 
Object + Liquid 

3 
(9%) 

3 
(9%) 

  5 
(36%) 

5 
(36%) 

5b 
Object + Forces 

   4 
(9%) 

4 
(29%) 

 

5c 
Liquid + Forces 

     4 
(29%) 

5d 
Object + Liquid + Forces 

      

Table 57: The frameworks of understanding for floating and sinking ideas that the 

children held at the beginning and the end of the activities. 

 



276 
 

Taken as whole the results of the analysis investigating changes in the children’s 

ideas during the course of the tasks revealed that it was possible to change the older 

children’s ideas and that these changes frequently occurred at framework level with 

Year 6 and Year 9 children demonstrating more scientific and abstract concepts at 

the end of the sessions. 

 

7.3 New Approaches to Studying Children’s Ideas about Floating 

and Sinking - Multimodal Group Studies 

 

In this section the multimodal aspects of the floating and sinking activities are 

discussed. Initially, the prevalence of what appear to be gestures that are specific to 

the floating and sinking activity within the children’s responses are explored, and 

then using specifically sampled group studies drawn from the larger corpus of video 

data the importance of multimodal ideas are explored within the context of the 

floating and sinking activity. As in the electricity chapter, three groups studies are 

analysed using the storyboarding technique in order to explore the different levels of 

communication and what these add to an understanding of children’s ideas in this 

area. The group studies were purposively sampled in order to provide an overview of 

typical responses for the three age groups. Finally, one group study, Year 6, was 

further analysed using the timeline analysis approach, as with electricity this group 

was purposively sampled because of the levels of interaction between the children in 

the group and the data generated appear to provide interesting findings.  
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7.3.1 Children’s Gestures for Floating and Sinking 
 

In order to explore the types of gestures that children used during their discussions 

of floating and sinking, a content analysis of all of the children’s gestures produced 

when responding to the following probes was completed. 

The gestures produced were grouped according to the five categories identified 

during the pilot study (see Figure 17 in Chapter 5): 

• referential; 

• representational; 

• expressive; 

• thinking;  

• social. 

The prevalence of these gestures during the groups studies which were fully 

transcribed and the initial and end probes of all of the activities within the total video 

corpus are shown in Table 58. 

 
Types of 

Gesture 

Referential Representational Expressive Thinking Social Total 

Year 2 9 28 6 0 22 65 

Year 6 8 79 13 6 29 135 

Year 9  9 12 4 8 20 53 

Table 58: The frequency of the different types of gesture that the children produced during 

the floating and sinking activities. 

 

No gestures were produced which appeared to fit into new or additional categories 

and there was some evidence of all of the categories being used within the results, 

thus suggesting that these five categories identified successfully capture all aspects 

of the gestures used. The results in Table 58 demonstrate that within the context of 

the floating and sinking activity representational gestures were produced most 



278 
 

frequently overall and social gestures also appeared more common. However, the 

prevalence of representational gestures appeared to be influenced by the age of the 

children and in the Year 9 group, social gestures had a stronger prevalence. Overall 

the children appeared to use referential gestures less frequently when compared to 

during the electricity activity.  

One key finding from the analysis was that there was consistency between the 

different age groups of children regarding the gestures that they associated with 

floating and sinking. Photographs drawn from the group work videos which show the 

different age groups discussing what floating and sinking are provided (Figure 47 

and 48). Typically, the children used stationary hand gestures during their verbal 

discussions of floating. Often these contained flat hands held at about shoulder 

height with palms facing downwards, in some cases the children would hold their 

hands in ‘c’ and backwards facing ‘c’ shapes in order to represent boxes. As before 

these would be held stationary for a few seconds before being released. Finally, 

some children would hold just one hand out, palm facing downwards and fingers 

spread wide. The hand would then be moved in a gentle sideways motion for a few 

seconds before being placed back onto the top of the desk. 

 

Figure 47: Typical floating gestures produced by the children during the activities. 

When discussing sinking, the children typically used downward motions in order to 

show what they thought sinking was like. Photographs drawn from the activities 

which show the typical gestures that the children used are provided (Figure 48). 
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Figure 48: Typical sinking gestures produced by the children during the activities. 

Often these gestures were made using just one hand, which was initially held at 

shoulder height and then lowered towards the top of the table at which the children 

sat. The speed of hand movement did vary, with some children making a fast sudden 

movement towards the top of the table and others making a slow gentle motion 

which would end just above the top of the table. 

During the activities some children also used props from the setting in order to 

represent their ideas for floating and sinking (Figure 49). Figure 49 shows one such 

example, here a Year 2 boy supported his discussions of what he thought floating 

and sinking was by using a book to represent the surface of the water. In the first 

image Adam placed a ‘floating’ object on top of the book that he was holding flat. 

Whilst in the second image Adam, moved the object below the book in order to show 

what he thought sinking was. 

 

Figure 49: Year 2 boy, Adam, uses props in order to show what he thought floating 

and sinking was. 
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As with electricity, children used referential gestures during their discussions of 

floating and sinking. However, this type of gesture appeared less frequently during 

the floating and sinking activity. Referential gestures were typically used by the 

children in order to draw attention to the objects that they were using to support their 

discussions.  

 

Time Person Verbal Report Gesture 

03:20 Thomas I’ve drawn a pencil and a rock. Thomas points to his 
drawings on his 
worksheet. 

Table 59: Year 2 boy, Thomas, uses a representational gesture to highlight what 

objects he had included in his diagram. 

 

In this example of a referential gesture, Thomas, a Year 2 boy, can be observed 

using a referential gesture in order to draw attention to the objects that he drew in his 

diagram (Table 59; Figure 50). It is proposed that this gesture which anchors his 

discussion to the drawing is useful for two reasons. Firstly it draws the attention of 

the listener or viewer to the product of his effort and provides a supporting context for 

his verbal response. Secondly, the information drawn from both the verbal response 

and the gesture serve the purpose of providing a definition for what the items that he 

has drawn are. One interpretation of this data is that this is a deliberate act by 

Thomas in order to ensure that it is clear what the objects that he has drawn are. 

Thomas used referential gestures frequently during his discussions.  

 

Figure 50: Thomas’ referential gesture (Table 59), Ciaran’s representational gesture 

(Table 60) and Thomas anchoring his discussion to an object (Table 62).  
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Within the context of the floating and sinking tasks representational gestures were 

also used. In one example Ciaran, a Year 2 boy, used his hand to make a downward 

motion as he discussed his ideas for the kind of things that sink (Table 60; Figure 

50). Ciaran stated that “very heavy stuff goes” and as he said this he made 

downward movements with both of his hands. It is proposed that the gesture in this 

example also helps to add clarity to Ciaran’s discussion. Without the downward 

gesture it would not be clear where exactly Ciaran thinks the “heavy stuff” does go. 

Using the translation of the gesture in conjunction with the content of the verbal 

response it is clear that Ciaran thinks that heavy objects go down to the bottom of 

the liquid in which they are being placed.  

 
Time Person Verbal Report Gesture 

01:00 Ciaran Very heavy stuff goes. As he speaks 
Ciaran makes a 
downward motion 
with both of his 
hands. 

Table 60: Ciaran, a Year 6 boy, uses a representational gesture in order to show 

how he thinks heavy objects move through water when they are sinking. 

 

Ciaran’s representational gesture is just one example of many that could be drawn 

from the corpus of video generated by this study. What is clear is that children do 

use such representational gestures in order to complete their discussions or add new 

information to discussions that may not be readily evident. Expressive gestures were 

used by the children to highlight values such as strength of responses. This 

particular form of gesture occurred less frequently than representational or social 

gestures during the floating and sinking activity.  

 

An example of such expressive gestures could be observed among the Year 9 

children as Angela used an expressive gesture in which she spreads out her fingers, 

clenches her hands and then spread the fingers again (Table 61; Figure 51). This 

expressive gesture, containing the repeated movement of her fingers, shows the 

behaviour of a floating object. What is interesting is that in this case the gesture 

extends our understanding of Angela’s ideas beyond the content of her verbal 

response. Notably, Angela appeared to struggle to verbally define what floating is 
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without using the word float. Angela’s gesture, however, shows that according to her 

ideas a floating object sits in the water and her flat hands represent the behaviour of 

the object which remains stationary. 

 

Time Person Verbal Report Gesture Other Non-
Verbal 

00:39 RS Okay so what do you think 
floating is? 

 As the RS 
begins to ask 
the question 
Zoe removes 
her hands from 
her face and 
places them on 
the table. 

 Angela It’s where the object like, it 
floats. 

As she speaks 
Angela raises 
both of her 
hands slightly 
into the air, 
spreads her 
fingers out so 
that the hands 
are held straight 
and then pulls 
them back into 
clenched fists. 
She then 
spreads them 
out again and 
lowers them to 
the table. 

 

Table 61: Angela, a Year 9 participant, uses an expressive gesture in order to show 

her understanding of how a floating object behaves (RS = researcher). 

 

The use of gesture to extend the meaning portrayed in the content of speech was a 

frequent occurrence within the video corpus. However, one interesting finding was 

that for the floating and sinking tasks, thinking gestures only appeared to be used by 

the older children (Years 6 and 9). It is unclear why this occurred, but perhaps one 

explanation may be that the younger children often picked up objects when they 

were discussing their ideas and this action may in some way have either reduced or 

replaced the necessity for the thinking style gesture to occur. For example, during 
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one Year 2 activity, a group were discussing what kind of things sink. Thomas and 

Ciaran both proposed that heavy objects would sink. As they developed their ideas 

Thomas could be seen to pick up the ball of plasticine. His accompanying verbal 

discussion highlighted that he thought that this object would sink but he failed to 

complete the sentence. He did however, keep hold of the ball of plasticine (Table 62; 

Figure 51). 

 
Time Person Verbal Report Gesture Other Non-

Verbal 

01:11 Thomas Maybe that will sink cuz… Thomas picks 
up the ball of 
plasticine. 

Nicola reaches 
across the 
table to pick up 
the bouncy 
ball. 

Table 62: Thomas, a Year 2 child, anchoring his discussion to an object that he was 

holding in his hand.  

 

It is difficult to support with certainty the view that Thomas’ action of holding this 

object in some way replaced the typical thinking gestures that were produced by the 

Year 2 children when discussing electricity but it may have. However, it is also 

possible that because the floating and sinking activities were more ‘hands on’, 

concrete and familiar, the younger children may not have felt that the topic posed too 

much difficulty for them. In addition, it is possible that any thinking gestures produced 

by this age group may have occurred during the aspects of the tasks that were not 

fully transcribed. 

 

Figure 51: Thomas anchors his discussion to an object (Table 62), Angela using an 

expressive gesture (Table 61) and Alice’s thinking gesture (Table 63). 
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Clear evidence of thinking gestures did, however, occur in the Year 6 age group and 

whilst some thinking gestures contained finger drumming they also sometimes 

contained what appeared to be rocking motions. Alice’s group had been discussing 

how the shape of a boat helped them to float and how there was something on the 

bottom of a boat that helped them to do this. When probed further for what the 

children thought it was Alice who stated that she could not remember the name and 

as she made her verbal response she sat on her hands and rocked slightly from side 

to side (Table 63; Figure 51). As soon as she has finished speaking Alice stopped 

the rocking motion and removed her hands. It was suggested that this repeated 

motion was not an externalised form of stress, Alice’s voice didn’t change pitch and 

her facial expression did not change, but this was rather just an externalised form of 

her thinking. The gesture ended at the same time as her verbal response which 

supports the notion that in some way the two modes of communication are 

connected. It would appear that the rocking motion when used in this way signified to 

the onlooker that Alice is unable to provide any further comment that was relevant to 

the current discussion but as the gesture ended when her speech did it is proposed 

that she still remained open to joining in with other discussions and Alice did 

continue on during the activity to play a very active role. 

 

Time Person Verbal Report Gesture 
02:08 Alice I can’t remember what they are called. Alice sits on her 

hands and rocks a 
little from side to 
side. 

Table 63: Alice, a Year 6 child, using a thinking gesture during her discussion of how 

the shape of the bottom of a boat helps it to float. 

 

Thinking gestures were useful for revealing the time during which the children were 

considering their responses and required additional thinking time. They could also 

signal when the children had reached the limits of their ability to respond and that the 

discussion should move on. However, social gestures could also reveal important 

cues about children’s ideas through moments when they may have uncertainty and 

moments when they may require support from peers or tutors. Within the context of 

the floating and sinking activities, social gestures appeared within all of the age 
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groups and were the second most common gesture found overall and most common 

in Year 9. Some of the social gestures that the children used were complex and 

appeared to contain many different elements. The following Year 2 social gesture 

contained this level of complexity and occurred as the children were discussing their 

predictions for which objects would float and sink (Table 64). Thomas had predicted 

that the pumice stone would sink because it was quite heavy. His verbal response 

confirmed his certainty about this result and he covered the object with his left hand 

as he spoke. In his social gesture he shook his head and Ciaran, another member of 

his group, looked over at him and then looked down to the table. Ciaran’s social 

gesture was interesting because it appeared to show that he was not so sure of 

Thomas’ certainty about this result. By looking down at the table Ciaran appeared to 

indicate that he did not want to engage in this debate with Thomas, perhaps because 

he disagreed with the prediction or perhaps because he was not so certain. Ciaran’s 

looking behaviour towards Thomas could also be interpreted as a social challenge 

but Thomas did not respond. Whilst it was difficult to be entirely certain what this 

social gesture meant it was clear that there was some form of meaningful social 

interaction occurring between these two boys. 

 
Time Person Verbal Report Gesture Other Non-

Verbal 
12:57 Thomas My idea about this is 

definitely gonna be right. 
As he speaks 
Thomas puts 
his left hand 
over the 
pumice stone. 

Thomas shakes 
his head as he 
speaks and 
looks at the 
researcher – 
Ciaran looks 
over to Thomas, 
he then looks 
down at the 
table. 

Table 64: Transcript extract showing how Thomas and Ciaran, Year 2 children, used 

social gestures during their discussions of what items they think will float and sink. 

 

Evidence of more complimentary social gestures could be observed within the Year 

6 video corpus. In the example below, Daniel and Sarah used social gestures 

amicably during their participation in the activities (Table 65; Figure 52). The 

interaction of focus here occurred as the children were completing the drawing task. 
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Sarah questioned whether it was okay for the children to draw a human body. The 

researcher confirmed that the children were free to choose anything that they would 

like to draw and this prompted a discussion about whether or not people float or sink.  

 

Figure 52: Daniel and Sarah’s social gestures used during their discussion of 

whether or not people float or sink (Table 65). 

 

As Daniel spoke he imitated a person floating in water. As he did this he looked at 

Sarah who had begun to mimic his actions. Sarah agreed both verbally and in her 

social gesture with the ideas that Daniel suggested (e.g. that people can float or sink 

depending on what they are doing in the water). Sarah’s smile provided additional 

social support for Daniel’s proposal. 

Overall the results of the analyses of gesture show that it is possible to identify all 

five categories of gesture in the video materials drawn from the floating and sinking 

activity. In some cases the gestures used appeared to be task specific and highly 

related to floating and sinking, in others, for example the social gestures, there 

appeared to be consistency across the science topics.  

 
Time Person Verbal Report Gesture Other Non-

Verbal 
2:17 Sarah Can you draw a human body?   
 RS You can draw whatever you 

want I really don’t mind. 
  

 Daniel Well sometimes you sink and 
sometimes you float, cuz if 
you go like that and stick your 
bum up then you float. 

Daniel imitates 
floating in the 
water by 
spreading both 
of his arms wide 
and pushing his 
chest forward. 

He looks to 
Sarah who is 
also spreading 
both of her 
arms. 
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As he says 
“float” he moves 
both of his arms 
and uses his left 
hand to indicate 
an upwards 
movement, his 
hand is palm 
upwards. 

 Sarah Yeah.  Smiles as she 
looks at Daniel. 

Table 65: Transcript extract showing the social gestures shared by Daniel and 

Sarah, two Year 6 children, during the floating and sinking activities (RS = 

researcher). 

 

The analyses of gesture revealed that sometimes these appeared to be redundant to 

the children’s verbal discussions of their ideas, other times the gestures appeared to 

contain supporting information for the content of speech and finally the gestures that 

children produced could sometimes carry meaning that was not stated or provided 

elsewhere. Such findings are consistent with the work of Crowder and Newman 

(1993) who found similar results in their study of children’s use of gesture. It is 

perhaps this last form of gesture, those that go beyond the meaning stated in other 

response types that are the most valuable in terms of helping to understand the 

ideas that children have for floating and sinking. The analysis of these gestures was 

fundamental to providing a full understanding of children’s ideas.  

 

7.3.2 Group Studies for Floating and Sinking 

 

In order to explore what the multimodal analysis of data could add to the discussions 

and debates regarding the processes that support conceptual change, 3 group 

studies were purposively sampled from the entire corpus of audio / video data as 

they were with electricity. One group was selected from each age studied and the 

groups were sampled according to whether the participants used non-verbal 

gestures within their discussion. As almost all of the children gestured at some point 

during the activities, sample cases were drawn from those groups where the 

gestures appeared to perform an important role in the children’s discussions (e.g. 
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gestures were used to support, complete or elaborate on verbal explanations when 

the children were talking). In order to gain a balanced view, these group studies 

included examples where changes were evident following the challenge of children’s 

ideas alongside examples where no change was evident and examples where the 

activities did not progress as expected. By taking this approach, the analyses 

presented here are particularly representative of typical classroom activities where 

there may be great levels of variability in the other factors that can impact on the 

learning and the outcomes that may result directly from teaching.  

In all instances the group studies chosen for further analysis were transcribed fully. 

In order to reduce the data to a manageable level a storyboard was produced for 

each group (Figure 54 Year 2, Figure 62 Year 6 and Figure 64 Year 9). These 

storyboards captured key events within the activities, important ideas and 

discussions that the children had and the frameworks of understanding for floating 

and sinking that were evident at the beginning and end of the activity. The 

storyboard was also used to highlight ‘critical moments’ where the discussions 

between the participants appeared to have an impact on the children’s learning or 

where the different modes of communication played an important role in either 

communicating children’s ideas or where there was contrast between the content of 

both modes. The critical moments identified during the storyboard analyses were 

subjected to transcription across three conditions: sound only, image only, and 

sound and image together. 

 

7.3.3 Year 2 Group Study 

 
The Year 2 group study focused on four children (two female, two male) called Tina, 

Nicola, Ciaran and Thomas from Village Primary School. The activity lasted 

approximately 40 minutes from start to finish. The activity was held in the school 

library area which contained two large round tables. The children were encouraged 

to sit around one of the tables and once the activity began the researcher moved the 

water tank to this table in order for the children to complete the tasks. The group had 

been put together by the Year 2 class teacher in the school, in accordance with the 

researcher’s request the teacher had allocated the children so that each group 

contained a range of different academic abilities.  
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The initial analysis presented here focused on the multimodal representations that 

children brought when first discussing their ideas about floating and sinking. The 

Year 2 storyboard (see Figure 54) details the ideas contained within the children’s 

verbal responses to probes of their knowledge, the content of their drawings, their 

written responses to the sentence completion task and the gestures that they use as 

they talk. All of the children agreed in their verbal responses that floating or sinking 

depended on the position of the object in the water. All of the children agreed that 

the weight of the object was the most important factor for deciding whether or not 

items would float or sink. In their drawings, all of the children drew two items, one in 

the floating position (all children drew an object at the surface of the water in the 

diagram) and one in the sinking position (all of the children drew an object at the 

bottom of the tank in the diagram). The representations that the children used during 

the drawing task possibly revealed a dichotomous relationship between the ideas of 

floating and sinking; notably floating was drawn at the surface of the water and 

sinking at the bottom of the tank. This group of children drew a number of different 

objects including pencils, racks and people, the latter causing debate within the 

group regarding whether or not people float or sink.  

None of the children in this group produced a written response to the sentence 

completion task. The gestures produced were interesting. At the beginning of the 

activity Ciaran produced a stationary gesture whilst discussing a floating object and a 

gesture containing a downward motion when discussing sinking. These gestures 

were used to represent the objects that Ciaran was discussing and they were a non-

verbal way of extending the ideas that he presented in his speech. In the extract 

shown below (Table 66; Figure 53) Ciaran verbally states that ‘very heavy stuff 

goes…’, the gesture is particularly useful in this instance as it enables us to see how 

Ciaran thinks that the object will move in the water and finishes his train of thought. 

Ciaran used both of his hands to make a downward movement. This gesture 

included information that was not found in his speech and is fundamental for 

extending and clarifying our understanding of his ideas about what type of objects 

sink and indeed how these objects actually move in the water. 

Time Person Verbal Report Gesture 

01:00 Ciaran Very heavy stuff goes. As he speaks Ciaran 
makes a downward 
motion with both of his 
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hands. 
Table 66: Transcript extract showing Ciaran’s use of a representational gesture 

during his discussion of type of objects he thought would sink. 

 

During this initial stage of the activity, Ciaran was the only child to produce a gesture 

that represented his understanding of the behaviour of objects but another member 

of the group, Thomas, frequently picked up and held objects as he was forming his 

verbal responses in discussion.  

 

Figure 53: Ciaran’s representational gesture (Table 66), Thomas using objects 

during his discussions (Table 67) and Nicola using a weighting gesture to test the 

weight of an object (Table 68). 

 

For example, Thomas identified rocks as objects that will sink. As he did this he 

picked up and held the pumice stone that formed part of the material sorting task 

(Table 67; Figure 53). This type of handling of objects could be proposed to occur by 

chance but because he selected the pumice stone when discussing rocks it 

appeared that Thomas was anchoring his verbal response to the physical object. 

Thomas did this frequently throughout the duration of the activity. 

 

 

 

Time Person Verbal Report Gesture 
01:07 Thomas Rocks cuz they’re heavy. As he speaks 

Thomas picks up 
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the pumice stone 
and holds it in the 
flat of his hand. 

Table 67: Transcript extract showing how Thomas, a Year 2 participant, frequently 

anchored his discussions to physical objects when discussing what items he thought 

would float and sink. 

 

Overall this group were all classified as having frameworks that corresponded to 2a 

object properties framework in the categorisation system developed in Section 7.2.4 

of this chapter for their floating and sinking ideas. The 2a framework identified that 

the children focused on the properties of the object when they were discussing 

floating and sinking. Specifically these children focused their discussions on the idea 

of weight of the object and the way that this influences whether an object will float or 

not. All of the children agreed that light objects floated and heavy objects sank. 

When considering all of the factors that may be related to the topic the children 

appeared to consider only the location of the object and at no time discussed the 

properties of the liquid or the forces that may have been involved. 

When undertaking the materials sorting task, the children positioned all of the items 

that ‘felt’ light into the float pile, all heavy items into the sink pile, and when they are 

uncertain about the weight of an object they placed it into the ‘don’t know’ pile. The 

blocks of hard and soft wood did, however, instigate some debate within the group. 

Thomas insisted that they would float, whilst Nicola thought that they would sink. The 

children actively moved the wood between the piles until the researcher suggests 

that perhaps they should consider putting them on the ‘don’t know’ pile. Nicola 

moved the wood to this location. When Thomas was probed for why he thought that 

the wood would float he stated “well it’s not really that heavy is it?” When Nicola was 

asked why she thought it would sink Tina stated “Because it might sink, we don’t 

know”. Interestingly as she spoke she picked up the small piece of snake wood, 

moved it twice between her hands and then placed it back onto the ‘don’t know’ pile.  
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Figure 54: Storyboard for Year 2 Group Study Analysis. 
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As the children worked through the materials sorting activity one interesting gesture 

occurred, this gesture appeared to represent weighing scales. What was interesting 

about this gesture was that it appeared not only with this age group of children but 

with the older children too (Year 6 and 9). In the example presented in Table 68 

(Figure 53) Nicola was discussing the reasons why the children have allocated 

certain objects to the ‘float’ pile. 

  
Time Person Verbal Report Gesture 

09:15 Nicola Well we’ve got a ball [the red 
sponge ball] we’ve said it will float 
because it’s not that heavy. 
 
 
 
 
 
We think that one is… [tests the 
weight in her hand and then puts 
it with the middle pile on the table] 
…we don’t know about that one. 
 
We know this one will float so 
we’ve put that one there. 

As she speaks Nicola 
picks up the red 
sponge ball, the ball is 
held in the palm of her 
hands, she moves her 
hand slowly up and 
down as though testing 
the weight of it. 
Repeats the same 
weighing gesture 
again. 

Table 68: Nicola, a Year 2 child, uses a representational gesture when discussing 

the items that she thought would float and sink. 

 

The weighing gesture did appear to serve some function in Nicola’s decision making 

process and later as the activity moved on the children even encouraged the 

researcher to use a similar gesture or action in order to feel the weight of an object 

that had surprised them.  

As the children tested the materials they took it in turns to add new items, they left all 

of the materials in the water tank and only removed them at the end. Unlike the older 

children, this group did not plan or discuss how to add the materials to the water but 

they did agree that how they would decide if an item floated or not would be through 

observing its behaviour in the water. If the item moved to the bottom of the tank the 

children assessed it as sinking and if it stayed at the top it was considered to be 

floating. Overall, the children were fairly accurate in the way that they classified the 

materials with the exception of a few items. When asked to comment on the 
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materials that surprised them, Nicola highlighted that she was surprised by the 

behaviour of the ‘bouncy’ ball because it was ‘light’. As Nicola spoke she clarified 

which objects she was discussing by using a referential gesture to point. Thomas 

expressed his surprise at the plasticine sinking and he made the suggestion that if a 

small piece were removed from the ball then perhaps it would be able to float. 

Finally, Tina highlighted her surprise that the snake wood sank. The snake wood 

was deliberately chosen because although it was small and felt light it sank in the 

water; it was exactly these qualities that surprised Tina. The extract below (Table 69; 

Figure 55) shows her discussion and her non-verbal behaviour (e.g. Tina asks the 

researcher to hold the snake wood so that she can feel the weight too before 

removing the object and throwing it back in the water to see what happened).  

 
Time Person Verbal Response Gesture 
15:19 Tina Feel this [the snake wood] light 

isn’t it but look. 
Tina hands the snake 
wood to the researcher, 
the researcher holds 
the snake wood in her 
hand for a second, Tina 
then takes the piece of 
wood from the RS and 
throws it into the water 
where it sinks. 

Table 69: Transcript extract showing Tina encouraging the researcher to hold the 

piece of snake wood that has surprised her. 

 

When challenged to manipulate the plasticine in order to see if the children could 

make it float rather than sink they tried a number of different shapes. First they 

flattened the plasticine until it was thin, then they tried ball shapes and finally a 

hollow ball shape. When the children began to struggle with the task the researcher 

offered to help to make a shape which would float. The children agreed and the 

researcher made a bowl shape. When probed as to why the children thought that the 

plasticine now floated Thomas proposed that the material was now lighter.  
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Figure 55: Tina encourages the researcher to feel the weight of the snake wood 

(Table 69), Ciaran uses a representational gesture as he discusses the Earth (Table 

70) and Tina anchors her discussion to an object (Table 71). 

 

When the children’s ideas were challenged through the demonstration of water 

displacement and upthrust using the inflated balloon, the children associated the 

upthrust force with weight and Nicola proposed that pushing the balloon into the 

water was heavy. During this part of the activity, the children revealed a good 

understanding of gravity and its effects (e.g. that gravity pulls things down), and they 

also demonstrated that they understood that gravity can be dependent on the object. 

Interestingly, Ciaran proposed that heavy things have more gravity. He helped to 

support his ideas by using a representational gesture in which he used both hands to 

form a circular shape that he associated with the Earth (Table 70; Figure 55). 

 

Time Person Verbal Report Gesture 

29:30 Ciaran Cuz the earth is a heavy things 
so it’s got more gravity.  

As he says Earth 
Ciaran uses both of his 
hands to make a 
circular shape, he 
holds this for a second 
and then lowers his 
hands. 

Table 70: Transcript extract showing Ciaran using a representation gesture during 

his discussion of gravity. 

 

However, despite showing an understanding of the forces introduced during the 

conceptual challenge aspect of the task, this group demonstrated no evidence of 

conceptual change when probed at the end of the activity. The children still all 
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proposed that floating and sinking was to do with the position of the object in the 

water and that ‘soft’ things float and ‘hard’ things sink. The children’s ideas at the 

end of the activity were still categorised as a 2a object centred framework which 

focused on the weight of the object. 

In terms of exploring the gestures of individual children the evidence suggested that 

overall, Tina frequently used gestures during her discussions. These gestures 

appeared to take many forms. She frequently handled objects as she spoke and 

often spent time looking at these in detail. Table 71 shows one occasion when she 

does this. 

 
Time Person Verbal Report Gesture 
10:45 Tina Because it’s like the same as 

this one. 
Tina holds the ring in 
her hands and 
inspects it as she 
speaks. 

Table 71: Transcript extract showing Tina anchoring her verbal discussion to a 

physical object during the activities. 

 

Nicola was a fairly quiet member of the group. However, once the activity moved 

onto object sorting she became more active and expressed surprise when the 

objects did not behave as she anticipated. Nicola did gesture sometimes during her 

discussions but not all the time. The example in Table 72 (Figure 56) Nicola imitated 

swimming as she discussed the link that she perceived between a person swimming 

in the water and objects floating and sinking. 

 
Time Person Verbal Report Gesture 
02:54 Nicola Sometimes when you are going 

under water you get a bit 
stressed but you don’t sink right 
to the bottom. 

As Nicola speaks she 
stands up and then 
mimes swimming. 

Table 72: Transcript extract showing Nicola miming a person swimming, the gesture 

is used to support her verbal discussion. 

 

Ciaran tended to follow Thomas’ lead during the activities, however, he did ask the 

other children for their ideas when they were undertaking the sorting activity. Like the 
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other children Ciaran also frequently handled the objects as he discussed them and 

decides on their behaviour (Table 73; Figure 56).  

 

Figure 56: Nicola mimes swimming as she discussed floating and sinking (Table 72), 

Ciaran handles objects as he decides on how they will behave in the water (Table 

73) and Thomas holds a surprising object in his hand as he discusses it (Table 74).  

 

The transcript extract in Table 73 (Figure 56) provides one example of this form of 

behaviour, here Ciaran was deciding whether a plastic disk would float, he moved 

the object around in his hands as he spoke and then placed it back onto the top of 

the table once his discussion is completed. 

 
Time Person Verbal Report Gesture 

12:04 Ciaran Won’t float. Ciaran turns the clear 
plastic disk around in 
his hands and then 
puts it back on the 
table. 

Table 73: Transcript extract showing Ciaran handling a plastic disk as he decides 

whether it will float or sink. 

 

Finally, Thomas also frequently anchored his verbal discussions to the manipulation 

of the physical objects provided. Thomas introduced a gesture which appeared to 

represent weighing scales. He also used the objects provided to clarify his intended 

meaning. In the example provided in Table 74 (Figure 56) Thomas was discussing 

his surprise that the plasticine did not float. In his verbal discussion he did not 

identify the material but he did pick up the plasticine and held it in his open hand so 
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that it was clear what he was talking about. This use of the object in order to reduce 

misunderstanding appeared to frequently occur within this particular group of 

children. 

 
Time Person Verbal Report Gesture 
15:05 Thomas I’m surprised about this. Thomas picks up the 

ball of the plasticine 
from the bottom of the 
water tank and holds it 
flat in the palm of his 
hand. 

Table 74: Transcript extract showing Thomas anchoring his discussion to an object 

that surprised him. 

 

Overall, the Year 2 group study demonstrated how the children in the age group 

used the objects as props in order to complete their verbal discussions. It also 

helped to illustrate the way that the children in this age group appeared to anchor 

their discussions of floating and sinking to the objects rather than to the liquid in 

which the items were placed. No group studies within this age range completely 

changed their ideas about floating and sinking. While the children frequently 

appeared happy with the concepts introduced and able to understand them, they did 

not incorporate these into their later discussions. 

 

7.3.4 Year 6 Group Study 
 

The Year 6 group study focused on five children (three female, two male) called 

Sarah, Daniel, Alan, Lucy and Ellie from Village Primary School. This group study 

lasted approximately 50 minutes from start to finish. The activity took place in the 

school library, the layout of which is described in the Year 2 group study earlier. The 

group had been defined by the class teacher and at the request of the researcher 

contained a range of different academic abilities. The group worked well together 

and frequently collaborated in order to generate ideas and to support each other in 

the completion of the tasks. An overview of this case study is available in the 

storyboard Figure 62.  
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When asked, all of the children agreed that floating and sinking could be observed 

with reference to the position of objects in the water. The children proposed that 

floating was defined by an object staying in the water and not going under it while 

sinking was defined as occurring when an object became submerged. All of the 

children in this group produced drawings that included two objects: the floating object 

was always drawn on the surface of the water and the sinking object was always 

drawn at the bottom of the tank. As with the Year 2 group study, the drawings 

produced by the children in this group appeared to show a clear dichotomous 

relationship between floating and sinking. When probed about this, however, the 

children agreed that sinking objects did have to touch the bottom or they would be 

considered as floating. The children drew a range of objects including a canoe and a 

speedboat in the floating position, and a coin and a rock in the sinking position. All of 

the children in this group gave written responses to the sentence completion task 

which are provided as follows: 

 There is a big surface area. (Sarah) 

 They are spaced out… there is air in it. (Daniel) 

They are light and will float easily and doesn’t have air. (Alan) 

Of the air inside them. (Lucy) 

They are light and it doesn’t weigh the object underwater. (Ellie) 

These responses revealed that the children had slightly different ideas for what 

makes objects float ranging from the surface area of an object to its weight. The 

results to the sentence completion task for things that sink were almost the exact 

opposite and included: 

 Not a big surface area. (Sarah) 

 There is no air is in it and it is heavy. (Daniel) 

 They are heavy. (Alan) 

Lucy and Ellie failed to complete this sentence. A number of gestures were produced 

by the children during the early discussions of floating and sinking. For example, 

Daniel used two interesting gestures during his discussion of what he thought 
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floating was. The first gesture, a flicking motion, accompanied his verbal discussion 

of an object that sits on the surface of the water. One interpretation of this data is 

that the flicking motion that Daniel used was intended to represent the object at the 

surface of the water (Table 75; Figure 57). Thus this gesture added to the meaning 

portrayed in his verbal response. The subsequent gesture that accompanied his 

verbal responses of “things that stay on the water and which don’t go under it” 

appeared to initially represent a stationary object before moving into a demonstration 

of the way that an object would move if it were to go under the water. This 

representational gesture appeared to add meaning to the content of Daniel’s verbal 

speech and allowed us to see how he thought such an object would behave. 

 
Time Person Verbal Report Gesture 

00:11 Daniel Erm, all things that go above 
the surface, water surface. 

Daniel uses his left hand 
to make a gesture which 
begins in line with his 
shoulder, his hand 
makes a quick flick 
forward, he then lowers 
his hand to beneath the 
table. 

  Things that stay on the water 
and which don’t go under it. 

Uses both hands, held at 
shoulder height to make 
a cupping motion and as 
he says “under it” push 
both hands downwards 
as though moving 
through a substance. 

Table 75: Transcript extract showing Daniel using a number of representational 

gestures in his discussion of what he thought floating was. 

 

Figure 57: Daniel’s representational gestures used to show how he thought floating 

and sinking objects behaved. 
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Another interesting gesture produced at this stage in the activity represented the 

surface area of an object and was produced by Sarah as she discussed her ideas 

about how the surface area of the object could help it to float (Table 76; Figure 58).  

 

Time Person Verbal Report Gesture Other Non-
Verbal 

1:15 RS So is it the air in a boat that 
helps it to float? 

 Sarah puts her 
hand up, as 
she does this 
Lucy reaches 
across the 
table and picks 
up the pumice 
stone – Sarah 
extends her 
arm even 
further. 

 Sarah Is it the surface area? Like 
erm at the bottom of 
something if it’s like spread 
out it’s easier for it to float. 

Sarah uses her 
right hands to 
make a circular 
movement 
across the 
surface of the 
table as she 
speaks. 

 

Table 76: Transcript extract showing Sarah using a representational gesture in 

support of her discussion about surface area (RS = researcher). 

 

Figure 58: Sarah’s representational gestures for surface area (Tables 76 and 77). 

 

Overall, the children’s ideas at the beginning of the activity were classified as 2b for 

all of the children. The 2b framework (as defined by the Framework developed in 
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section 7.2.4) which was related to the object properties and in this group the 

children appeared to focus on the properties of the object such as its weight or the 

presence of air in the material rather than the properties of the liquid in which the 

object was placed. 

Interestingly, Sarah did demonstrate an early idea that may relate to, or be a 

precursor to, the concept of the upthrust force which is exerted by the water although 

she did not recognise it as such. In this discussion Sarah linked her ideas about 

surface area to the difficulty with which an object with a large surface area could be 

made to sink (Table 77; Figure 58). This representational gesture used by Sarah 

appeared to support her discussion and added to the information to that presented in 

her speech. 

 
Time Person Verbal Report Gesture 
01:26 RS Why do you think it might be 

easier for it to float if it’s more 
spread out? 

 

 Sarah Cuz then there isn’t just...cuz 
then its spread out over lots of 
water so then it’ll be harder to 
push it all down to make it sink. 

Sarah uses her right 
hand to make a circular 
motion across the top 
of the table and when 
she begins to say “push 
it down” she raises this 
hand from the top of 
the table and makes a 
downward motion, her 
hand is flat and the 
palm is facing towards 
the table. As she stops 
speaking she puts her 
hand on her leg. 

Table 77: Transcript extract showing Sarah using representational gestures during 

her discussion of the characteristics of floating objects (RS = researcher).  

 

When completing the material sorting task, the group engaged actively in debate, 

they agreed that the items that they have placed into the sink pile were heavy or may 

sink because of their shape. Lucy proposed that some objects may sink more slowly 

than others and that this may, in part, be determined by their shape. Daniel extended 

this discussion and used a complex gesture in order to support his articulation. The 
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extract in Table 78 (Figure 59) shows Daniel discussing how some shapes, for 

example, those that are like a parachute might take longer to sink. Daniel’s 

representational gesture which is used to show how such an object might behave 

showed how he thought the object may move through the water. 

 
Time Person Verbal Report Gesture 

11:19 Daniel Cuz of the area space, if you 
had like a parachute that’s like 
that...then it will take longer. 
 
 
 
 
 
 
 
Like if you put A4 paper in then 
you have to push the middle bit 
down and the other ends come 
up. 

Daniel uses both of his 
hands to make a slow 
downwards movement, 
palms are facing down, 
hands stay about a 
shoulder width 
apart...ends gesture 
when both of his hands 
reach the table surface. 
 
Daniel uses his hands 
to make a slight 
upwards gesture. 

Table 78: Transcript extract showing Daniel using representation gestures during his 

discussion of sinking objects. 

 

Figure 59: Daniel’s representational gestures to show how he thought parachute 

shaped objects might sink (Table 78) and Sarah’s representational gesture about 

sinking objects (Table 79). 

 

Gestures such as this are particularly helpful for revealing greater detail in terms of 

the children’s ideas. The children also proposed that objects floating and sinking in 

water behaved in a similar way to objects floating and sinking in the air. The children 

proposed that light objects that contained air were more likely to float and that items 

such as the sponge ball because of its properties were more likely to float. When 



304 
 

asked to devise an approach to testing the materials the children agreed that they 

would put them all in water and observe how the objects behaved. It was at this point 

that the children entered into an active debate about what they would look for in 

order to assess whether an object was sinking. This debate was captured in the 

transcript extract Table 79 (Figures 60, 61 and 63) and showed how the children 

used both their verbal discussions and gesture representations in order to reach 

agreement about object position and motion. 

 

 

Figure 60: Sarah and Daniel’s representational gestures used as they negotiate as a 

group how floating and sinking will be defined (Table 79). 

 

 

 

Figure 61: Daniel uses the water tank as a prop in his discussions of where objects 

should be located in order to be considered either as floating or sinking. 
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Figure 62: Year 6 Floating and Sinking Group Study Storyboard Analysis. 
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Time Person Verbal Report Gesture Other Non-
verbal 

14:25 Sarah Yes, because it has to touch 
the bottom of the water for it 
to actually sink... 
 
 
 
 
 
Cuz if it’s just like floating 
above then it is still floating... 
 
 
 
Not just right at the top. 

Sarah uses her 
right index 
finger to make a 
downwards 
motion that 
ends when her 
fingertip touches 
the table top. 
Uses both of her 
hands to make 
slight side to 
side rocking 
motions. 
Moves her hand 
in a vertical 
motion with her 
left had moving 
towards the 
table and her 
right hand 
moving 
upwards. 

 

 Daniel It’s sort of like.   
 Sarah If something sinks then it 

goes down to the bottom. 
Sarah uses her 
right hand to 
make a fluid 
motion in which 
the hand moves 
in a downward 
motion. 

 

 Daniel If it like. Tries to mime 
what he means 
but is struggling 
to show it. 

 

 RS I tell you what shall I move 
the tank over her so that you 
can show me? 

  

 Daniel Yeah.   
 RS   Moves the water 

tank to the 
table. 

 Daniel So if it’s like there then it’s 
sunk, if it’s there it’s floating. 

Uses a 2p coin 
to show 
locations in the 
water tank, hold 
the 2p coin at 
the base of the 
tank when he 
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say “sunk” then 
moves the 2p 
coin to the top 
of the tank when 
he says 
“floating”. 

 Daniel Say if this is a boat it’s kind 
of sunk there, look if the 
boat’s there it’s kind of sunk 
innit. 

Daniel holds the 
2p coin about 
an inch above 
the bottom of 
the water tank 
so that the 
others in the 
group can see 
where he is 
holding it 

Lucy and Ellie 
nod in 
agreement. 

 Lucy Completely under the water. Lucy uses her 
hands to 
indicate a 
downwards 
motion. 

 

 Daniel Completely.   

Table 79: Transcript extract showing the interaction between the group as they 

develop their ideas about the criteria that an object would need to meet in order to be 

either floating or sinking (RS = researcher). 

 

 

Once the children had agreed on what an object must do in order to be considered 

sinking they then went on to test the objects and observed their behaviour. The 

children systematically added the items one at a time and discussed what happened. 

Once they had completed this action with all of the objects they then decided that 

watching the speed with which an object sank could be used in order assess the 

weight of the object. The children planned an approach to testing two of the metal 

blocks in order to assess their weight. The approach taken was considered 

particularly scientific and was assessed according to the outcome. When the 

researcher moved the discussion on the children expressed their surprise that the 

different types of wood behaved differently in the water (e.g. the snake wood sank 

whilst the hard and softwood blocks floated). When probed for why they thought this 

happened Sarah stated that she thought that the snake wood was more solid and 

Lucy stated that she thought that the other wood contained more air bubbles. Overall 
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the children showed a high level of accuracy in their predictions with the exception of 

the snake wood. 

 

When challenged to make the plasticine float the children tried a range of different 

shapes including a star, a swan and a shallow bowl shape. Once a shape that 

floated was achieved (the shallow bowl shape) the children began to add marbles to 

the model, all of the children agreed that it was important for the model to have 

‘balance’ in order to keep it afloat.  

 

Overall, this group of children demonstrated extensive use of gestures in all five 

categories, some example are presented here. In the first example shown in Table 

80 (Figure 63) Daniel can be observed using two forms of gesture. Firstly he used a 

representational gesture in order to demonstrate his understanding of what he 

thought sinking was. This gesture is interpreted as adding to Daniel’s verbal 

discussion and appeared to demonstrate how he thought a sinking object would 

move through the water. At the same time Daniel used a social gesture in which he 

looked to Alan. It appeared that Alan interpreted this social gesture as a question 

and he verbally responded to this by saying that he ‘can’t remember’ before placing 

his head down onto the top of the table. 

 

 

Time Person Verbal Report Gesture Other Non-
Verbal 

05:32 Daniel If it has water in it’s more 
likely to sink. 

Daniel begins 
the gesture with 
his right hand 
level with his 
shoulder and 
moves this in a 
diagonal 
downwards 
motion which 
stops at the 
table top. 

Looks to Alan 
as he does 
this. 

 Alan I can’t remember.  Alan places 
his head on 
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the table. 
Table 80: Transcript extract showing social gestures used between Daniel and Alan 

during the floating and sinking activity. 

 

Figure 63: Daniel using the tank as a reference point for his ideas about floating and 

sinking (Table 79) and Daniel’s representational gesture, used to show how he 

thought an object would behave when sinking and Daniel’s social gesture to Alan 

(Table 80). 

 

In another example, Daniel was observed using a thinking gesture as he worked 

through his ideas. Daniel began to move his hand towards his face. At the same time 

Daniel uses another social gesture, and he looked towards Lucy as she began to 

speak (Table 81). 

 
Time Person Verbal Report Gesture Other Non-

Verbal 

00:46 RS Ok, is it always because it 
doesn’t have air in it? 

Daniel begins 
to shake his 
head. 

Lucy puts her 
hand up. 

 Daniel Well no. Daniel his left 
hand to his 
face. 

Looks to Lucy 
as she begins 
to speak. 

Table 81: Transcript extract showing the social gestures that occur between Daniel 

and Lucy during the floating and sinking activities (RS = researcher). 

 

In response to the conceptual challenge aspect of the task all of the children agreed 

that water displacement, upthrust and gravity may have a role in helping objects to 

float. Interestingly, Sarah began to sing the Queen song ‘Under Pressure’ as she 

pushed the balloon into the water. This choice of song appeared to link to her 

understanding of the force that she was able to feel on the balloon. Once Sarah 
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begin to sing the whole group began to join in and for a few moments all of the 

children are singing “…pressure pushing down on me, pushing down on you…” 

Whilst it is difficult to be certain, this song did appear to play a role in not only 

bringing the group together but also in facilitating this group’s understanding of the 

phenomena under observation. This group did show evidence of conceptual change 

by the end of the activity. When probed for their ideas about floating and sinking, 

they all proposed that this was related to forces. Floating was redefined as the water 

holding the object up and sinking was redefined as being ‘something to do with 

upthrust and gravity’. At the end of the activity the children’s ideas were categorised 

as 4b, this framework acknowledges that the children have now incorporated 

knowledge of forces into their discussions (section 7.2.4 has further details on the 

frameworks associated with floating and sinking). It was for this reason that this 

particular group study was used for the later timeline analysis which explored the 

development of ideas over the course of the activity (section 7.4). 

 

7.3.5 Year 9 Group Study 
 

 

The Year 9 group study focuses on three children (one female, two males) called 

Nigel, Nick and Kirsty from Village Secondary School. This group study lasted 

approximately 40 minutes from the beginning to the end. The activity was held in a 

vacant science laboratory within the school. Throughout the activity one secondary 

school science teacher remained in the room in order to observe and comply with 

the insurance specifications of teaching in this environment. The group was 

randomly generated by the researcher who formed the group by drawing names 

from the consent forms provided by the participating children. The researcher had no 

prior knowledge of the children’s academic ability prior to forming the group but it 

was proposed by the class teacher that the children in this class were of mixed 

academic ability. The group study is summarised in the storyboard contained in 

Figure 64.  

Overall this particular group of children worked well together but they tended to be 

quieter during the activity than the younger children (Year 2 and Year 6). They did 

discuss their ideas and sometimes offered support to each other during the activity 
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but this was not in any way close to the scale that was observed within the Year 6 

group study. 

As with the other groups at the beginning of the activity the Year 9 children produced 

drawings that featured two objects: one in the floating position and one in the sinking 

position. The floating item was drawn at the surface of the water and the sinking 

object was drawn at the bottom of the tank. These drawing appear to support the 

previous results in which the other groups of children appeared to represent a 

dichotomous relationship between floating and sinking. Interestingly two of the 

children, Nick and Kirsty drew two circular shapes, one in each position. In both 

instances these circular shapes were identical in size, although it was difficult to 

definitively state why this occurred it appeared to show that these children were 

aware that objects that look identical can appear in both of these positions. This may 

reveal that they understood that underlying, not necessarily observable differences, 

can influence whether an item floats or sinks. Nigel drew a boat in the floating 

position and a brick shape in the sinking position. This choice of objects appeared to 

represent his previous experiences and when probed he said that he had seen these 

object do this before.  

All three children in this group provided written responses to the sentence 

completion tasks:  

The object is either light or hollow and the water resistance keeps it up. (Nick) 

They have air inside and it makes them lighter. (Kirsty) 

They have air in them or something that is lighter than the liquid. (Nigel) 

Overall these responses appeared to show that the children have a number of ideas 

for what makes an object float with the weight of the object still appearing one of the 

most important factors. Nick did introduce the idea of water resistance in his written 

response and Nigel appeared to represent the idea of a relationship between the 

weight of the object in relation to the water. 

When asked to complete the sentence objects sink because, the following responses 

were produced: 

 The object is heavy and / or not hollow. (Nick) 
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 They are solid which means they are heavier. (Kirsty) 

 They don’t have air in them or something heavier than the liquid. (Nigel) 

As with the responses to the floating question, the children appeared to demonstrate 

a range of responses that covered the number of different ideas. Some of the 

responses appeared to attend to the weight of the objects. Nick appeared to discuss 

the internal properties of the object (e.g. whether it is hollow) and Kirsty discussed 

objects being solid. It is proposed that these two explanations actually reflect the 

same idea (e.g. that objects which are not solid or have internal hollow spaces are 

more likely to float). Once again Nigel appeared to acknowledge a relationship 

between the weight of the object in relation to the water. 

In the children’s verbal responses, however, they all appeared to pay attention 

almost exclusively to the object properties (e.g. they stated that heavy things would 

sink and light things would float). When probed on these ideas the children also 

identified that objects were more likely to float if they were full of air or were hollow. 

In their gestures produced at the beginning of the activity, both Nigel and Nick 

appeared to use these to represent the behaviour of the object in the water. In the 

first example (Table 82; Figure 65) Nigel used his index finger to represent how an 

object would move through the water if it were to sink. Nigel’s gesture was 

particularly useful for revealing how he thought an object would move if it were to 

sink even though at this stage in the activity he was discussing what he thinks 

floating is. This use of a representational gesture appeared to reflect the 

dichotomous relationship that he thought existed between floating and sinking (e.g. 

that one is the opposite of the other and indeed one representation can be used in 

order to provide clarity on what the other is). 

 
Time Person Verbal Report Gesture 
00:43 Nigel Something that if you put it in 

water doesn’t go to the bottom. 
As he speaks Nigel 
uses the index finger on 
his right hand to point 
downwards towards the 
table, he then uses this 
to make a slight 
downwards motion. 

Table 82: Transcript extract showing Nigel using a referential gesture during his 

discussion of what floating is. 
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Figure 64: Year 9 Floating and Sinking Group Study Storyboard Analysis. 



314 
 

 

Figure 65: Nigel’s representational gesture (Table 82), Nick’s representational 

gesture (Table 83) and Nick handling an object as discussed his ideas for items that 

float and sink (Table 84). 

 

Nick also used gestures in order to extend his verbal discussion. In this example 

Nick identified what he thought sinking was (Table 83; Figure 65). Nick produced a 

downward motion that began at his shoulder and ended at the surface of the table. 

One interpretation is that this representational gesture showed the way that he 

thought that the object would move in the water is if were to sink. This gesture added 

to Nick’s verbal discussion. 

 

Time Person Verbal Report Gesture 
00:41 Nick Is it like, it goes under the 

surface of the water. 
As he says this Nick 
uses his right hand to 
make a downward 
motion which starts at 
his shoulder and end 
at the top of the table. 

Table 83: Transcript extract showing Nick using a representational gesture during his 

discussion of what he thought sinking was. 

 

Overall, the group was categorised as having a 2b framework for their floating and 

sinking ideas. The 2b framework, as identified in section 7.2.4, focused on the 

properties of the object and although in the children’s written responses there is 

some evidence of awareness of other factors, such as the properties of the liquid in 

relation to the object, these ideas are not applied consistently across the response 

types. 
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When asked to complete the material sorting task, the children showed a high level 

of accuracy in their predictions. When asked for their rationale for the groups that 

they had created the children proposed that the items on the float pile were there 

because they were light and they contained air holes. As this discussion emerged 

Nick picked up the red sponge ball which he handled as he talked and placed it back 

on the table only once he had finished talking. This use of the object to support the 

discussion was interesting and it appeared that Nick was using this object as an 

example in order to illustrate what he meant (Table 84; Figure 65). 

 
Time Person Verbal Report Gesture 

06:18 Nick Well most of them are quite 
light and they have got well you 
can’t see if but they have got air 
holes. 

As Nick says quite light 
he picks up the red 
sponge ball moves it 
around his hand and 
then lowers it to the top 
of the table. 

Table 84: Transcript extract showing how Nick anchors his discussion of weight to a 

physical object during his discussion of what he thinks makes an object float. 

 

A similar gestural response was used as the group discussed the items that they had 

placed in their ‘don’t know’ pile. The children proposed that they were uncertain 

about some items because of their properties (e.g. the clear plastic disk is placed on 

this pile). When probed for their ideas, Nick proposed that the disk was not that 

heavy and it had a fairly big surface area. But they were uncertain as to what it would 

do. In this example, once again Nick picked up the object as he spoke, he moved the 

object around in his hand and then placed it back down as he completed his 

discussion. It could be that the object was used in this way to reduce possible 

misunderstandings or that by picking up the object of reference the child was able to 

reduce the need to identify the object as he was talking. Indeed in this example Nick 

never actually identified the object that he was discussing instead he just picked it up 

from the table as he spoke (Table 85; Figure 66).  
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Time Person Verbal Report Gesture 
07:18 Nick Well it’s like for this one [the 

clear round plastic disk] it’s not 
like heavy but it’s got like a 
bigish surface area which might 
help it to float because it’s 
spread out. 

As he says this one he 
picks up the clear 
plastic disk, rotates it 
between the fingers of 
his left hand and then 
puts it back down on 
the top of the table. 

 Table 85: Transcript extract showing Nick anchoring his discussion to objects. 

 

Interestingly, it was at this stage that the children were also drawing on their previous 

experiences in order to make their decisions. At one point, Nigel proposed that he is 

unsure about an object because he couldn’t remember what it would do. When 

probed for their ideas about the items that they had classified as sinking the children 

proposed that most of them were heavy, solid and had ‘no gaps’ in them. When 

probed further for what they meant by having ‘no gaps’ Nick began to draw on a new 

concept, the particle placement within the material, in order to complete his 

discussion. When asked to plan an approach for testing the objects the children 

adopted a systematic approach to the task. They agreed that all of the items should 

be placed in the water and that they should observe the behaviour of the object in 

order to assess whether it floats or sinks. Nigel proposed that they should just put 

the items in. The children took it in turn to add items to the tank. However, they were 

all careful to place the items in the water rather than to throw them in. Nick removed 

each item after it had been tested and the items were placed on different towels 

depending on what happened. When probed for their responses to the behaviour of 

some of the objects, Nick expressed surprise that the snake wood sank. Again he 

did not clearly identify the material but instead he held this up so that the researcher 

could see it before putting it back down on the table (Table 86; Figure 66). 

 

Time Person Verbal Report Gesture 
12:53 RS So can I ask you about those 

materials then? Was there 
anything there that surprised 
you? 

 

 Nick I wasn’t sure about this one [the 
snake wood] because it was 
quite light so I thought it might 
float but obviously not. 

As he says this Nick 
picks up the thin piece 
of snake wood, holds it 
up to show the RS and 
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then lowers it back 
down to the towel. 

Table 86: Transcript extract showing Nick’s surprise about a piece of snake wood 

that sank during the problem solving activity. 

 

 

Figure 66: Nick holds up an object that he is discussing (Table 85), Nick holds the 

piece of snake wood during his discussion of things that surprised him (Table 86) 

and Nigel hold the bead in his hands that surprised him during the object testing 

phase (Table 87). 

 

As with the younger children (Year 2 and Year 6) and as previously discussed in the 

examples related to Nick, these children also frequently handled the objects as they 

discussed them. Often the objects were rotated between the participants’ fingers or 

held in outstretched hands. Another example of this kind of object manipulation is 

shown in Table 87 (Figure 66). In this example Nigel is discussing an object that 

surprised him because it sank when he thought that it would float. In his verbal 

response, it was not clear which object he is referring to, however, by picking up the 

object Nigel’s discussion was completed and it is possible to understand which 

object has surprised him. It was also interesting to watch the way that he 

manipulated the object, as he talked Nigel rotated the object between his fingers and 

inspected it thoroughly as though looking for evidence to support why this had 

occurred. 
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Time Person Verbal Report Gesture 
13:33 Nigel  This sort of surprised me 

because of the volume but it 
does have a hole in the 
middle…the air … 

Nigel reaches forward 
and picks up the 
plastic bead from the 
towel in front in Nick, 
he holds the bead 
between his thumb 
and forefinger and 
rotates it as he speaks 
once he finishes 
speaking he puts it 
back down onto the 
towel. 

Table 87: Transcript extract showing Nigel anchoring his discussion of items that 

surprised him during the problem solving activity to the actual objects. 

 

When challenged to mould the plasticine in order to make it float, all of the children 

tried a range of different shapes. Nigel formed a boat shape because he knew that 

boats float. Nick made the plasticine as thin as he could because he thought that by 

making the surface area bigger it should work, whilst Kirsty tried to make the 

plasticine ‘lighter’ by spreading it out. Nick was the first child to make his plasticine 

float, he formed a boat shape with high sides. The children were then challenged to 

add marbles to the shape. They all agreed that the marbles needed to be evenly 

distributed in order for the shape to still float. This model making activity 

demonstrated the children’s awareness of a range of factors related to items that 

float, which they then applied during the task. For these children it was clear that 

they showed an understanding that the surface area of the object can enhance its 

ability to float and that the distribution of weight is also important for a floating object. 

When challenged through the balloon activity all of the children were easily able to 

accept the concepts introduced. Nigel agreed that he thought that water 

displacement was important for helping objects to float. Nick demonstrated a good 

understanding of the influence that gravity had and related this to the upthrust force 

pushing up. When probed for their ideas at the end of the activity, this group also 

demonstrated evidence of conceptual change. They proposed that floating occurred 

when the gravity and upthrust forces on the object were equal, whilst sinking was 

considered to occur when the force of gravity on the object was greater thus the 
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object moved down in the water. At the end of the activity the group are categorised 

as holding a 4b framework (see section 7.2.4 for full details of the different 

frameworks) for their ideas of floating and sinking, this framework acknowledges that 

the children have an understanding of the role that forces play in floating and sinking. 

 

7.4 Mapping Conceptual Change across a Floating and Sinking 

Activity 
 

In order to explore in more detail the way that the children’s ideas can change within 

the context of one floating and sinking practical science activity a timeline analysis 

was conducted on the Year 6 group study data (Figure 67 provides an overview of 

the development of the children’s ideas during this activity). 

The Year 6 activity detailed in the timeline for the development of ideas above 

demonstated the following developmental pattern for the concepts used and 

discussed throughout the activity. During the first probe of the children’s ideas for 

floating and sinking Daniel introduced the first single concept, this focused on the 

position of the object in the water. This single conceptual idea was extended by 

Daniel to a network of two ideas when he proposed that the presence of air in the 

object was important and influenced the position of the object in the water. Lucy 

subsequently revised Daniel’s ideas and incorporated the inclusion of weight, thus 

developing the network further to now include three ideas. Finally during the 

beginning of the activity to the 2 minute timeslot the network was extended one final 

time by Sarah. Sarah proposed that surface area was also an important factor that 

was related to floating and sinking. Thus during the initial probes of children’s ideas a 

weak form of conceptual development appeared to occur as the children 

progressively incorporated new ideas into the network. The core idea, which was the 

position of the object in the water, did not change but additional information was 

added to this as it developed. 
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Figure 67: A timeline analysis of the Year 6 Floating and Sinking activity.
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As the activities moved on the network of four ideas continued to be applied by all of 

the children until they reach the 11 minute mark (shown within the timeline as the 

2:00 – 13:00 minute period), at this point Lucy introduced another new concept to the 

network of ideas. Lucy proposed that the shape of the object was important. The 

core concept in the network, the position of the object in the water, remained the 

same and the new idea is added to the network. These findings showed evidence of 

the increasing complexity of the network of ideas that was revealled as children 

moved through the activities, by adding different tasks such as material sorting the 

children were able to incorporate these new elements into their existing 

understanding.  

During the time between 21:00 minutes and 38:00 minutes, which was the time that 

the children were discussing the behaviour of materials during the testing phase and 

the modelling of the plasticine in order to make it float a new network of ideas was 

revealed. Daniel proposed that the sinking concept could be used as a way to 

measure the weight of an object. What was interesting was that this network 

revealed Daniel’s understanding that weight was an important factor in the floating 

and sinking activity and that such activities could be used in order to test other 

factors.  

During the conceptual challenge aspect of the task a number of new networks of 

ideas are revealed. Firstly, Alan identified that in order to make objects float they 

must be balanced. This small network of ideas appeared to sit in isolation and was 

none the less an important aspect of Alan’s thinking regarding floating and sinking 

and indeed revealed an important aspect regarding the way that his ideas were 

developing. When attending to the demonstration of water displacement using the 

balloon Daniel acknowledged this as an isolated concept and began to incorporate 

this idea into his own discussions. When testing the way that the balloon felt when it 

was pushed down into the water Sarah associated the upthrust force with “pressure” 

and as before this idea appeared to sit as an isolated concept at this point in the 

activity. Interestingly though by the end of the activity the concept of pressure 

appeared to be transformed by Daniel who now proposed that in fact this was the 

water holding the object up. This network containing just one idea was further 

adapted into a complex network by Alan. At the very end of the activity Alan showed 

evidence of a clear revision of the network of ideas presented thus far, Alan replaced 
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the core concept in the network with the idea of forces and indeed this was the term 

that he used, he then associated floating and sinking with the forces of upthrust and 

gravity. This network of five ideas showed a complete revision of ideas from the 

beginning of the activity to the end thus demonstrating evidence of radical 

conceptual change. 

This particular group study was interesting for two reasons. Firstly throughout the 

activity it is possible to witness a weak form of conceptual change occuring as the 

children added new information to the ideas that they already had. In addition, it was 

possible to observe a radical form of conceptual change between the beginning and 

the end of the activity, as the core concept for the network was changed from being 

the positon of the object in the water to being the forces involved in the floating and 

sinking process. 

 

 7.5 General Discussion 

 

Overall, the results of the traditional analysis of children’s ideas for floating and 

sinking indicated that these ideas do become more scientific over time with the older 

children typically discussing more complex concepts than the younger. In terms of 

the drawing completion tasks, the results revealed that the older children were more 

likely to produce identical objects in both the floating and sinking positions, 

potentially indicating their understanding that the internal properties of objects were 

more important. The younger children typically drew ducks, boats and people as 

floating objects, and rocks, bricks or stones as sinking objects. These drawings may 

reflect the children’s everyday experiences of floating and sinking objects. As with 

the electricity activities, the oldest children always presented completed sentences 

whilst the younger children’s responses were more variable. However, all children 

readily responded to the verbal probes and, as anticipated, the results highlighted 

that the older children were more likely to use a range of reasons to explain floating 

and sinking whilst the youngest children tended to discuss weight.  

Interestingly, the results of the conceptual challenge aspect of the tasks highlighted 

that the older children were more likely to revise their ideas once they were 

challenged through the tasks and, as with the electricity activities the children 



323 
 

frequently incorporated the new terms such as upthrust into their discussions. There 

was some evidence of both weak and radical changes in the concepts used. 

Importantly, as with electricity, although the youngest children (Year 2) had been 

able to discuss the complex concepts of upthrust and water displacement during the 

conceptual challenge task, none of these children incorporated this into their ideas at 

the end of the activities. The results to the traditional analyses as a whole appear 

consistent with the previous research finding of Inhelder and Piaget (1958), Howe, et 

al. (1990) and Havu-Nuutinen (2005). 

The results of the multimodal analyses provided further support for the importance of 

exploring this range of response types. The gestures that the children used during 

the floating and sinking activity could be sorted according to the categories defined 

during the pilot studies. However, the prevalence of these gestures did appear to be 

mediated by the scientific topic studied. Notably, referential gestures were far more 

common during the electricity activities. This may in part be explained by the 

theoretical nature of the topic or perhaps it was because the children frequently held 

and manipulated objects during the floating and sinking activity and this object 

manipulation may have replaced the pointing gestures used with electricity. What 

was evident was the finding that again the gestures that the children used during 

floating and sinking did indeed appear to play a fundamental role in providing more 

information about the children’s ideas themselves. In order to explore this further, a 

selection of group studies were subjected to a full multimodal analysis using the 

storyboarding approach in order to uncover more detail about the children’s ideas 

across the age groups. The results revealed that the children used the full range of 

response types to support their articulation of the ideas about floating and sinking. 

These group studies and in particular, the Year 6 group study, also showed the 

importance of the social context during learning with the children frequently working 

together in order to produce more advanced concepts throughout. The Year 6 group 

study was also subjected to further analysis in order to explore the evolution of 

concepts during a single activity. As shown in Section 7.4, this analysis revealed an 

increasing complexity of networks of ideas produced, notably, showing both weak 

and radical forms of conceptual change.  
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Chapter 8 Summary and Conclusions 

 

 

8.1 Introduction 

 

In this concluding chapter, the work in this thesis is reviewed and critically evaluated 

both against the research literature introduced earlier and on its own terms. In 

particular, this chapter considers the importance of the multimodal approach adopted 

here and reflects on the ways that this might be used to inform general 

constructivism (as discussed in Chapter 2), what additional information such an 

approach may reveal about children’s ideas in science, the mechanisms 

underpinning models of conceptual change (as discussed in Chapter 3) and the 

ways that children’s ideas about electricity and floating and sinking change over time 

(as discussed in Chapters 6 and 7). As previously identified in the development of 

methodology (Chapters 4 and 5), a multimodal approach suggests that 

communication occurs across a range of response types (Kress, et al., 2001). These 

response types include verbal and written communication, drawings and non-verbal 

communication such as body language and gesture (Kress, et al., 2001). 

Multimodality in relation to understanding how knowledge is acquired and discussed 

is a new and evolving field of research but is beginning to be applied to science 

education and science education research. The work in this thesis makes an original 

contribution towards and builds upon this early foundation. In addition, this chapter 

also provides a focused discussion about the four models of conceptual change that 

have been utilised during this work in order to show how these have been used to 

inform the analytical lenses applied, what each model brings to the discussion and 

how each can be interpreted in a new hybrid model of conceptual change. Finally in 

this chapter, the research undertaken is also considered briefly for its wider 

application to science teaching and learning in order to explore what may be drawn 

out to support science teachers. 

 

This work was given focus and direction by raising the following research questions: 

• does a multimodal analysis of verbal and non-verbal communication facilitate 

a better understanding of children’s ideas in science? 
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• can such analyses be utilised in order to explore and contribute to an 

understanding of the dynamics of conceptual change? 

• do outcomes from the work in this thesis have any classroom application? 

 

An overarching question regarding whether or not it is possible to apply a multimodal 

research lens to the issues of conceptual change in science education is also 

proposed. Each of these questions is responded to in the subsequent sections of this 

chapter. In summary, and as a whole, the work in this thesis might best be 

considered to have multiple method design incorporating a multimodal, task-based 

approach for which a new and innovative methodology was developed.  Three 

Research Phases were highlighted in Chapter 4 with the main data collection taking 

place in Research Phase 2.  Participants in Research Phase 2 included 93 children 

aged between 6 and 14 years in Years 2, 6 and 9 in four schools in the East 

Midlands. The science topics explored included electricity and floating and sinking, 

both common across the National Curriculum, and chosen because both had been 

previously studied in the conceptual change literature (e.g. for electricity see 

Shipstone, 1985; Osborne et al, 1991; Borges & Gilbert, 1999, for floating and 

sinking see Inhelder & Piaget, 1958; Howe et al, 1990; Havu-Nuutinen, 2005). 

Electricity as taught in school is often conceptually driven and counter-intuitive and 

relies on children’s abilities to interpret phenomena that are not always directly 

observable. Floating and sinking, on the other hand, was chosen as this provides 

children with the opportunity to explore a topic that they may have encountered 

many times before in a concrete way with resources that could be directly 

manipulated. 

 

The multimodal, task-based approach developed for this study incorporated dialogic 

teaching (Alexander, 2004; Fisher, 2007; Mercer et al, 2009; Heneda & Wells, 2010) 

with carefully developed practical science activities embedded and utilising 

collaborative learning opportunities (Howe, 2009). The tuition was delivered by the 

researcher as a participant.  The main stage of the research generated 72 hours of 

audio-video materials and drawings and written responses which required extensive 

transcription and analysis.  This required the design and development of an NVivo 

project to facilitate the analysis of gesture and other classroom interactions including 
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where learning took place.  The quality and quantity of data and other materials 

collected required the introduction of ‘storyboarding’. Whilst popular in media and in 

business studies, this has never, as far as is known, been used in a science 

education context before. Finally, in order to capture what, if anything, changed in 

the children ideas during the science tasks and activities, a form of timeline analysis 

developed from the work of Givry and Tiberghein (2012) was incorporated to map 

the evolution of children’s ideas in ‘real time’.  

 

This work, including its design, methodology and analytical tools developed and 

employed, is believed to be the first of its kind in the UK and in this context. In part, 

this is due to the significant amount of data analysis that is necessary in order to 

successfully undertake a multimodal analysis so that an appropriate level of detail 

can be captured.  

 

8.2 Research Question 1: Does a multimodal analysis of verbal 

and non-verbal communication facilitate a better 

understanding of children’s ideas in science? 

 

In order to explore whether or not the multimodal analysis of verbal and non-verbal 

communication facilitates a better understanding of children’s ideas in science this 

section explores both the traditional and a multimodal analyses adopted. The ‘typical’ 

traditional approach to studying children’s ideas is contrasted and critiqued using the 

novel multimodal approach developed in this thesis, with the specific aim of 

highlighting its utility.  

 

 8.2.1 A ‘Traditional’ Approach to Studying Children’s Ideas 

 

As detailed in Chapter 4, the traditional constructivist approach to studying children’s 

ideas frequently employ research interviews (e.g. Vosnidaou & Brewer, 1987), often 

including children’s drawings (e.g. Sharp & Kuerbis, 2006), science tasks (e.g. 

Biddulph & Osborne, 1984), and observational details (e.g. Tasker, 1981). The 

content from these is then analysed for the underlying ideas or frameworks 

presented and subsequently used to compare what ideas children have (see 
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Chapter 4 for a full review of traditional constructivist approach to studying children’s 

ideas). This approach has proved to have high validity and reliability in the science 

education field. These traditional approaches provided the foundation for the new 

and innovative multimodal approach developed for this work.  However, it is 

important to address the weaknesses of this approach, for example, the influence 

that questioning strategies can have on children’s responses (Mathison, 1988; 

Lythcott & Duschl, 1990), the difficulty that some children can have when 

representing their ideas in drawings (Symington, et al., 1981; Cox, 1992) and the 

challenges of accurately interpreting children’s responses when working from an 

adult’s frame of references (Johnson & Gott, 1996).  

 

 8.2.2 Electricity 

 

The research literature regarding children’s ideas about electricity was discussed in 

Chapter 3 and included three important studies that had been highlighted for their 

comparative value (Shipstone, 1985; Osborne et al, 1991; and Borges & Gilbert, 

1999). The results to the traditional approach to analysis undertaken in this thesis 

are compared with these studies here both thematically and by framework. The 

analysis of the themes was guided by diSessa’s model of conceptual change (1988), 

which highlighted the importance of assessing the way that pieces of information (p-

prims) are related to each other.  The results of the electricity activities that were 

undertaken as a part of Research Phase 2 of this work revealed a number of 

interesting themes in the children’s responses to what they thought electricity was 

both before and after tuition (Table 18). The Year 2 children frequently discussed 

electricity according to its purpose (e.g. that it makes things work or that it was a 

form of power).  By Year 6, the children were progressing to think about electricity in 

terms of what it actually is rather than what it does (e.g. a flow of electrons). The 

Year 9 children ideas were more diverse, eventually thinking about electricity in 

terms of energy and electrons.  With the exception of Year 2, the children ideas 

evolved to become more scientific as they got older. These results suggested that for 

these children the conceptual challenge task was particularly helpful for supporting 

the children in the development their ideas.  
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In order to explore the overall frameworks of understanding that the children held 

about electricity, a framework analysis which was underpinned by the work of 

Vosniadou was conducted on the children’s responses before and after the activities 

(Table 19). The results revealed that the youngest held unipolar and clashing 

currents models initially.  The most frequently occurring model among Year 6 and 

Year 9 children was the closed circuit variety.  Following conceptual challenge, 

however, more scientific models were evident throughout. 

 

As with the previous studies of Shipstone (1985), Osborne, et al. (1991) and Borges 

and Gilbert (1999), one important finding was that the children did appear to use 

different frameworks of understanding depending on the nature of the questions 

asked and the task to be completed. For example, in the discussion in Chapter 6 it is 

highlighted that when the circuit building activities required the children add 

additional bulbs they were more likely to introduce what appeared to be a ‘clashing 

currents’ model in order to explain how electricity ‘flowed’ through the circuit to both 

bulbs. This particular finding highlighted potential issues related to reliability and 

validity and it was particularly difficult to locate some of the children’s ideas in a 

specific framework. Thus the results presented are reviewed with a caveat that in 

some cases the children appeared to frequently revise or review their ideas about 

electricity. None of the four additional frameworks identified by Borges and Gilbert 

(1999) were evident in this sample of participants, perhaps indicating that the new 

frameworks are relevant to more advanced age groups rather than school children.  

Furthermore, as highlighted by the previous research of Osborne, et al. (1991) this 

study found that the younger children typically discussed electricity in terms of its 

purpose, whilst the older children demonstrated more sophisticated scientific 

explanation in their ideas and discussed ‘current’, ‘atoms’ and a ‘flow of electrons’. 

These results were consistent with those proposed by Shipstone (1985) who also 

highlighted the move towards more advanced models in the older children. Returning 

to the results to the SPACE project this study also found that the younger children 

were less able to identify what conductivity was, less able to judge the materials that 

would be able to conduct electricity and less able to generate an appropriate method 

for the testing materials. These results were not found in the older children who were 

able to accurately sort materials according to these properties and effectively test 

them for their behaviour.  
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Further interesting results were related to the children’s use of language, as 

anticipated the oldest children (Year 9) used the most scientific terms in their 

discussions whilst the youngest children (Year 2) tended to use everyday terms such 

as ‘electricity makes things work’. The Year 6 children showed more variable results 

in terms of the language that they used and the ways that they defined electricity.  

 

 8.2.3 Floating and Sinking 

 

The research literature exploring children’s learning about floating and sinking was 

discussed in Chapter 3, as highlighted three important papers are considered for 

their comparative value (Inhelder & Piaget, 1958; Howe, et al., 1991; Havu-

Nuutenen, 2005). As with the previous section, three of the selected models of 

conceptual change as also considered in their critical review of results. 

 

Using diSessa’s (1988) analytical approach the results of the floating and sinking 

activities that were also undertaken as part of Research Phase 2 of this work 

revealed a number of interesting themes in the children’s responses about what they 

thought was meant by the terms floating and sinking (Tables 55 and 56). The Year 2 

children frequently discussed floating and sinking in terms of an object’s location in 

the water. By Year 6, the children were progressing to think about floating and 

sinking in terms of not just location of the object in the water but also in terms of the 

weight of the object and forces such as gravity. The Year 9 children’s ideas included 

further important scientific aspects such as water displacement. With the exception 

of Year 2, the children’s ideas evolved and became more scientific after undertaking 

the conceptual challenge task. These results suggested that for older children this 

task was particularly helpful for developing ideas. 

 

In order to explore the underlying frameworks in the children’s ideas these were 

assessed both at the beginning and the end of the tasks. The analytical framework 

was informed by Vosniadou’s work (Vosnidaou & Brewer, 1987). The results of this 

analysis are summarised in Table 57. The results revealed that the younger children, 

Year 2, typically focused on the properties of the object. For the older children (Year 

6 and Year 9) there was a greater amount of variability in the results for the 
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frameworks held with some Year 6 children focusing on object properties whilst 

others discussed forces, after conceptual challenge many of the Year 6 children 

discussed forces. Similarly, some Year 9 children focused on the properties of the 

object at the beginning activities, some discussed forces and some children used 

combination frameworks which incorporated aspects related to both the object and 

the liquid. Following the conceptual challenge activity none of the Year 9 children 

focused exclusively on the properties of the object, instead the children used the 

forces framework or a combination framework which accounted for both properties 

related the object and those related to the liquid. 

 

Overall, these results were largely consistent with the previous research of Inhelder 

and Piaget (1958), Howe, et al. (1990) and Havu-Nuutinen (2005) with the younger 

children typically focused on the properties of the object. By comparison with 

previous research, the results supported the studies of Inhelder and Piaget (1958) 

and the study by Howe, et al. (1990). The ideas that the children presented became 

more scientific over time and moved away from focusing on the properties of the 

object in the water, to discussions that included an awareness of the properties of 

the liquid and an understanding of ‘global’ aspects such as forces. As previously 

mentioned, this was perhaps the first study to take into account a forces framework 

and therefore provided a new layer of understanding for what children know about 

floating and sinking, particularly with reference to these more ‘global’ aspects. One 

criticism of the previous research has been its emphasis on the concepts of density 

and children’s understanding of the way that the density of both the object and liquid 

can influence whether or not an object will float or sink. In terms of concepts related 

to floating and sinking, it is perhaps less straight forward than it first appears and 

there are many factors that can play a role. This level of complexity is often not 

reflected in the literature. In terms of the results of this current work, however, it is 

clear that there are aspects of the findings that can easily be reconciled with the 

previous research. Children’s ideas about floating and sinking do, in the early stages 

at least, appear to take an object centred view and it is only as children get older, 

and perhaps engage more with tuition about floating and sinking, that they become 

aware of the important role that other factors play. 
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 8.2.4 Limitations of the Traditional Analysis 

 

As with any research project it is important to consider the limitations of the work 

discussed here. These include the convergence of findings due to methodology, 

issues of matching ages in the studies, the difficulty of the concepts explored, and 

the children’s previous experiences with the topics. In terms of methodology, this 

work, like many previous studies exploring children children’s ideas from a 

constructivist perspective, utilised a multiple method approach in order to provide 

methodological triangulation (Cohen, et al., 2011). Furthermore the need for multiple 

method studies is highlighted by Johnson and Gott (1996). Johnson and Gott’s 

important work introduced an important criticism of adults’ work with children and the 

possibility that misinterpretations of data can occur. Because of this, methodological 

triangulation was perceived to be of fundamental importance. As has been 

discussed, it was clear that by adopting a combination of methods, which included 

children’s drawing, interviews and science tasks, it was possible to reveal findings 

that largely converged with previous studies in both electricity (Shipstone, 1985; 

Osborne et al, 1991; Borges & Gilbert, 1999) and floating and sinking (Inhelder & 

Piaget, 1958; Howe, et al., 1990; Havu-Nuutinen, 2005). Although such converging 

findings reflect reliability and validity for the current work, it is clear that these do not 

enable the current research to move forward on issues of conceptual change. It is 

also acknowledged that there are some issues with matching the ages of the 

participants in order to provide direct levels of comparison, an issue that had been 

previously highlighted by diSessa (2008). In order to limit this difficulty the researcher 

compared the results with three important previous studies for each topic in order to 

enable the maximum coverage to previous literature. In order to provide appropriate 

comparisons within the original data collected for this work the schools selected were 

typical of the local demographic populations (Cohen et al, 2011; Arthur et al, 2012).  

 

In terms of the models of understanding for electricity and floating and sinking 

revealed in this work, it was clear that although the electricity outcomes were largely 

comparable with previous studies, this work revealed additional models for floating 

and sinking that were not present in the research literature. This, in part, may be 

explained by the tendency for previous floating and sinking research to focus on 

density (Inhelder & Piaget, 1958; Howe, et al., 1990) whilst this work introduced the 
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more ‘global’ forces concepts and these may be more difficult particularly for the 

younger children. It can also be proposed that the current work has only been able to 

provide a single snapshot in time and the changes in the children’s ideas that were 

observed may be the results of an instantaneous response to the tasks rather than 

representing long term effects. That said, some of the differences between the 

results of this work and the results presented in the research literature may be a 

result of the children’s experiences with the National Curriculum. Notably, it is 

possible that more of the children were able to talk about electricity using scientific 

terms than those in Shipstone (1985) and Osborne, et al. (1991) because these 

children have received specific tuition as a matter of policy.  

 

This work did adopt a new dialogic approach which has become popular in 

mainstream teaching following guidance from Alexander (2004). This approach also 

included the use of tasks designed to challenge ideas and incorporated science 

stories (Millar & Osborne, 1998). Reflecting on these activities, the children appeared 

to enjoy this approach as it allowed them to explore their ideas without feeling that 

they were incorrect. The conceptual challenge tasks were well received by all. 

Finally, the science stories introduced did appear to be beneficial. In some cases the 

children showed humour when discussing Archimedes’ discovery. The structure of 

the activities undertaken appeared to be helpful for eliciting the children’s ideas and 

did provide a focused background for the science topics studied. It was interesting to 

note that although the responses to the electricity probes could be altered by the 

context (e.g. the number of bulbs in the circuit), this influence was consistent across 

all age groups of children. One final limitation of the current study regards the 

researcher’s background. The researcher is a psychologist rather than a qualified 

teacher or science educator. Being a psychologist was, however, considered to be 

an advantage when undertaking the literature review and for appreciating aspects of 

concept development and change that may have been more challenging for an 

educator who may not have been trained in this area in detail. 
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8.2.5 A Multimodal Approach to Studying Children’s Ideas 

 

In this section, a summary of findings from the multimodal aspects of the research 

undertaken here is presented and discussed, in particular this section aims to 

respond to the research question regarding whether the multimodal analysis adds to 

an understanding of children’s ideas in science.  The findings highlight the frequency 

with which gestures occurred during the science activities, the ways that these 

appeared to change between the different age groups, and the ways that gestures 

were used to support the content of verbal and written speech or add to the 

understanding of what children know by providing additional knowledge that was not 

contained in the more well studied response types. The additional knowledge 

provided in the gestures revealed important aspects of children’s ideas not otherwise 

noted in their verbal or written responses and drawings. Therefore it is proposed that 

studying gestures is important if we are to understand all aspects of children’s ideas. 

A typology of children’s gestures specific to the two topics studied in detail and, in 

some instances perhaps, to science as a whole is proposed.  

 

 8.2.6 Gesture 

 

As introduced previously, multimodal research is a new and evolving field that is just 

beginning to emerge within science education (Crowder & Newman, 1993; Crowder, 

1996; Goldin-Meadow, 2000, 2003; Roth & Lawless, 2002; Blown & Bryce, 2010; 

Padalkar & Ramadas, 2011). Studies have taken place across a number of different 

age groups including primary and secondary school children, although typically the 

studies explore interaction between the children and the adults involved, rather than 

child to child interaction as has been studied to some extent in this work. Previous 

multimodal research has been most prominent in the UK and North America. 

 

According to Jewitt (2013), “Multimodality is an inter-disciplinary approach drawn 

from social semiotics that understands communication and representation as more 

than language and attends systematically to the social interpretation of a range of 

forms of meaning making.”  Multimodality proposes that communication occurs 

across a range of different levels which includes the traditional constructivist 

approaches to studying children’s ideas such as speech, writing and drawings but 
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also extends to gestures and other non-verbal behaviour (Kress, et al., 2001). 

According to the important and early work of Kress, et al., each of these different 

levels permits the transmission of knowledge according to different affordances (e.g. 

in non-verbal responses it is possible to represent information that may not be 

contained in speech because of the structure and rules of this communication 

medium). Therefore, and in order to gain a fuller understanding of children’s ideas, 

this work attended to a wider range of response types which may permit a fuller 

more detailed understanding of what children know and can do. However, 

multimodal research is not beyond criticisms these include O’Halloran and Smith’s 

critique (in press) that many multimodal studies typically analyse transcripts even 

though they explore different response type other than verbal language. 

Furthermore, O’Halloran and Smith bring to the fore issues of transcription as well as 

reproduction for later publication whilst Jewitt (2013) proposes that multimodal 

research can seem impressionistic in its analysis (Jewitt, 2013). Indeed, it is entirely 

legitimate to ask how a gesture or an image has the same meaning to the ‘producer’ 

as that interpreted by the researcher.  Equally, it could also be argued that the same 

criticism is true of any verbal or written response or drawing (e.g. Johnson and Gott 

1996). It has also been suggested that multimodal research is intensive in terms of 

both time and effort (Jewitt, 2013) and although this analytical approach can facilitate 

a fine grained capture of details through specific instances, it may be far more 

difficult to generalise such findings to a wider context. Finally, can it be questioned 

whether it can be concluded with any certainty that the gestures that children 

produce are indeed meaningful and not just coincidental movements that occur. On 

this last point, the long history and majority of gesture research has established that 

children’s gestures are valid and reliable sources of information that may not be 

present in speech (Crowder & Newman, 1993).  Importantly, and according to 

Goldin-Meadow & Singer (2003), by attending to gesture it may be possible to track 

and determine when some children have reached an optimum moment for receiving 

tuition. This literature supports the case for the inclusion of analyses of gestures 

alongside other response types if we are to understand all aspects of children’s 

ideas in science. 

 

In order to complete the multimodal analyses undertaken in this study it was 

necessary to develop specific analytical tools to support this. Full details of these 
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tools are discussed in Chapter 5. The storyboarding technique, in particular, was 

developed in order to effectively summarise the content of the science activities 

alongside the complexity of data anticipated (e.g. Figure 68).  This approach to data 

analysis required extensive development in order to capture enough information so 

that it could be used to inform the conceptual change debate. Storyboarding has 

never been used in this context before and as such it could be vulnerable to 

researcher bias.  One advantage of storyboarding, in addition to facilitating the 

handling of complex data sets, is that it does negate the requirement for extensive 

transcript extracts as it effectively summarises important components of any analysis 

undertaken. 

 

As highlighted in Chapter 5, part of the analyses undertaken in the storyboards 

explored the findings of Goldin-Meadow’s work (2000, 2003) which suggested that a 

mismatch between the content of children’s verbal responses and children gestures 

revealed an ‘optimum’ opportunity for children to learn from tuition. This analysis 

explored what an understanding of gesture could add to the other response types in 

order to understand children’s ideas fully. In addition, the importance of studying the 

content of gestures was further underpinned by Karmiloff-Smith’s model of 

conceptual change (1992), discussed in more detail in Chapter 3. The analyses 

exploring whether incoherence between the content of gestures and other responses 

types such as language could be used to predict change produced variable results 

which also appeared to be mediated by the science topic studied. The results from 

electricity revealed that in the Year 2 group study (Figure 68) there was coherence 

between the content of the children’s gestures and their verbal responses and no 

evidence of conceptual change at the end of the activity. In the Year 6 group study 

there was incoherence between the gesture and verbal response of one child, 

Rachel, and coherence for the other children.  But there was clear evidence of a 

change in ideas between the beginning and end of the tasks. Finally, in the Year 9 

group study, there was evidence of incoherence between the gestures and the 

verbal responses of one child, Janet, and coherence for all the other children, again, 

with clear evidence of conceptual change for all group members. Interestingly in the 

floating and sinking group studies, all three age groups demonstrated coherence 

between the content of their verbal responses and their gestures. Whilst there was 

no evidence of conceptual change for the Year 2 children, the other two age groups 
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did show clear development in their ideas between the beginning and the end of the 

activities. These results appear to show mixed support for Goldin-Meadow’s 

proposal that a mismatch between the two response types may signify that additional 

tuition would be beneficial for the developing the child’s ideas.  

 

However, such a conclusion must be drawn with care.  Goldin-Meadow’s work 

investigated a different topic area, notably mathematics, and it may be that her 

results are more context specific than was first thought.   

 

Overall, the storyboarding approach did have utility for sufficiently permitting the 

research to highlight important discussions between the children as they worked 

through their ideas. However, it is suggested that this approach to analysis was not 

able to capture the dynamics of conceptual change at ‘fine grained’ level required. In 

order to further assess the storyboarding approach it is proposed that further 

research should be undertaken in order to explore its utility in other contexts and for 

other science topics.  
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Figure 68: Storyboard from Year 9 electricity activities.
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 8.2.7 The Importance of Gesture: Towards a Typology 

 

One of the important aspects of the current work involved exploring the different 

types of gesture that the children used during discussion of their science ideas and if 

these gestures did appear to contain meaning not always evident through other 

forms of communication. Whilst there is previous work which has mapped the 

different types of gestures that are used across topics (e.g. McNeill, 1992; Roth, 

2000), few have aimed to map those that are specific to science. In order to explore 

the different types of gestures that the children produced and in order to propose 

what these may reveal about children’s ideas about electricity and floating and 

sinking, an initial typology of gesture was established from the pilot study data 

collected during Research Phase 1 and the main stage data collected during 

Research Phase 2 (Table 88). This typology was published for a professional 

audience where it met with interest and favourable review (Callinan and Sharp, 

2011). Five distinct categories of gestures were identified and these five categories 

of gestures all appeared to serve different functions. 

 

Contrary to previous research by Crowder and Newman (1993) and Crowder (1996), 

the gestures that the children used here were rarely, if ever, redundant.  Whilst it is 

difficult to say with certainty why this may have occurred, in part this might be 

explained by looking at the context in which the research took place. Crowder and 

Newman’s work took place in a general classroom setting where there may have 

been more opportunity to utilise redundant gestures.  By contrast, this work aimed to 

provide the children involved with an opportunity to operate multimodally and also to 

probe and potentially change their ideas. This focus on eliciting responses to specific 

questions and tasks may have influenced the types of gestures used and therefore 

only gestures that served a specific communication function may have been 

observed. 
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Scientific Gestures 

 
 

Type of Gesture 
 

 
Definition 

 
Example Photograph 

 
Referential 

Pointing to objects, pictures or people 
in order to complete / extend 

discussions of ideas 

 
 

Representational 
Acting out the behaviour of objects, 

people or events in order to show how 
something works or happened 

 
 

Expressive 
Using the hands to represent values 
such as the strength of responses in 
objects, people or events in order to 

show how they think they work 

 
 

Thinking 
Including finger drumming, head 

holding, face and hair stroking – used 
when considering how to respond to a 

question, problem or situation 

 
 

Interpersonal Gestures 
 

 
Type of Gesture 

 

 
Definition 

 
Example Photograph 

 
Social 

Eye contact, body movement, 
touching or nudging others – used to 
elicit a response from other members 

of a group 

 
Table 88: The different types of gestures identified in both the pilot studies of 

Research Phase 1 and the results of Research Phase 2. 

 

By way of example, and as discussed earlier in Chapter 6, Mike in Year 2 used a 

referential gesture to add to his discussion of his circuit drawing (Table 28, Figure 

30). By pointing to where he thought a bulb holder should appear, it was possible to 

have a clearer understanding of what he thought should be included and where. The 

storyboard from the Year 6 study (Figure 32) provided support for the notion that 

children’s gestures can be used to appreciate knowledge that is not represented in 

speech at all. Rachel’s responses showed that in her speech she describes 

electricity using its function (e.g. that it powers things), however, her representational 

gesture (a circular motion drawn with her hand) demonstrated that she also had an 
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awareness that electricity flowed through the circuit too. Similar findings were evident 

within the floating and sinking tasks. Daniel in Year 6 used a representational 

gesture to support his discussion of what he thought floating was (Table 75, Figure 

57). In his verbal response, he proposed that he thought floating occurred when 

things stayed above the surface of the water and did not go below it. This verbal 

response provided a location for the floating object but his representational gesture 

extended this discussion by showing how he thought both a floating and a sinking 

object would behave (e.g. as he talks about objects going underwater he lowers his 

hands as though they were the object). Interestingly, the gestures of the Year 9 

children produced during the floating and sinking tasks frequently featured the 

children anchoring their discussions to objects. For example, when Nigel, a Year 9 

boy, discussed an object that had surprised him, he picked it up and rotated it 

between his fingers as he spoke (Table 87, Figure 66). This use of gesture and 

object handling was interpreted as providing support for the content of the children’s 

speech.  

 

As highlighted previously, expressive gestures were used by the children in order to 

show values such as the strength of responses, for example, how the light from a 

bulb would appear. In one example, a Year 2 child, Selena, used just such a gesture 

in order to show how she thought the light would behave once she had completed 

her circuit (Table 23; Figure 27). Thinking gestures were also prominent in the video 

corpus, one example of this form of gesture was drawn from the floating and sinking 

activities. Alice, a Year 6 child, was discussing how the shape of a boat helped it to 

float (Table 63; Figure 51). As she discussed these ideas she stated in her verbal 

response that she could not remember and as she made her verbal response she 

sat on her hands and rocked slightly from side to side. This movement did not 

appear to be a stress response instead it appeared to be used as a non-verbal cue 

that she was considering her thoughts and was unable to respond at that time. As 

the researcher moved the questioning on, Alice stopped the gesture and returned 

her hands to the table. The final form of gesture found in the video corpus 

highlighted the importance of social interaction between the children. These social 

gestures were common across all age groups. In one example the social gestures 

between two Year 9 children, Janet and Noel, showed how they supported each 

other during discussions (Table 25; Figure 28). In this example, Janet named 
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materials that she thought were electrical insulators. As she named the materials, 

Noel pointed to examples on the table, at the same time Janet nodded to 

acknowledge Noel’s non-verbal contribution to the discussion. When comparing 

these results to the work of Crowder and Newman (1993; also Crowder, 1996), there 

was clear evidence of the children using gestures to both complete and extend their 

verbal and written responses and drawings. Thus, these results highlight the 

importance of studying gesture alongside other response types. 

 

 8.2.8 Gesture, Electricity and Floating and Sinking 

 

Each of the five categories of gesture identified are proposed to have their own 

specific function and meaning and were found to be evident in discussion about 

electricity and floating and sinking and across all three age group, albeit to varying 

degrees. An overview of the occurrence of the different types of gesture is presented 

in Table 89. 

 

Gesture Referential Representational Expressive Thinking Social Total 

Topic E F&S E F&S E F&S E F&S E F&S E F&S 

Year 2 38 9 33 28 6 6 8 0 15 22 102 65 

Year 6 21 8 48 79 18 13 4 6 31 29 122 135 

Year 9 23 9 15 12 4 4 5 8 15 20 62 53 

Total 82 26 96 119 26 23 17 14 61 71 286 253 

Table 89: The frequency of the different gestures used by the Year 2, Year 6 and 

Year 9 children across both electricity (E) and floating and sinking (F&S). 

 

As shown in Table 94, with the exception of the social gestures, the results 

suggested that of the four categories of science gestures, the referential and the 

representational gestures were more common than the expressive and the thinking 

gestures. The referential gestures were consistently more common during the 

electricity tasks than they were during floating and sinking. These forms of gesture 

provided additional information that was not readily available in the children’s verbal 

reports. It is proposed that this may have occurred because of the simpler and more 

concrete nature of the floating and sinking tasks relative to the more abstract and 

conceptual content of electricity. The representational gestures were more common 
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overall during the floating and sinking activities. These forms of gestures were 

typically used during discussions in order to show how the children thought the 

objects behaved in the water. Thus it is proposed that the type of gestures used may 

be influenced by the context and topic explored. Overall, thinking gestures occurred 

less frequently than the other types. One possible interpretation of this data is that 

often children were given probes to which they could respond and when children 

appeared to be struggling the researcher moved the activity on in order to minimise 

the children’s discomfort. Interestingly, when comparing the frequency of gestures 

produced by each age group, the Year 9 children appeared to use the least amount 

of gestures in total and the Year 6 children appeared to use the most. These results 

support the notion that there may be some age related changes in the use of 

gesture. 

 

The analysis also revealed that some gestures were unique to each science topic. 

During the electricity tasks, for example, the children across all three age groups 

used representational gestures in order to draw out paths showing how they thought 

the electricity moved in a circuit (Figure 69). As shown in Figure 69, the children 

either used their fingers to trace a path above the circuits, their whole hands or in 

some cases both hands to draw paths. This form of representational gesture never 

occurred during the floating and sinking activities.  It was particularly useful in this 

context for revealing the underlying models about electricity that the children held. 
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Figure 69: Typical representational gestures that occurred across the three age 

groups of children during their discussion about circuits. The gestures represented 

the ways that the children thought the electricity moved through the circuit. 

 

As with electricity, there were some gestures that typically occurred across all three 

age groups of children during the floating and sinking tasks. These gestures were 

also representational and revealed information about how floating and sinking 

objects behaved. As is shown in Figure 70, the representational gestures for floating 

typically featured the children holding their hands steady in the air. Often the 

gestures featured hands held flat with the palms facing downwards or the hands held 

adjacent to each other in a ‘c’ and a reverse ‘c’ shape. In all cases, these gestures 

represented the object remaining stationary suggesting that the children thought that 

floating objects remained still in the water. Interestingly, across all three age groups, 

similar gestures were also produced when the children discussed their ideas about 

sinking. The representational gestures used when discussing what the children 

thought sinking was always involved some form of downwards motion. Some 

children held one hand flat, representing either the water or the bottom of the tank, 

whilst the other hand was lowered towards it. Some children used just one hand to 

make a downward motion towards the top of the table that they were seated behind 
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and some children used their fingers to point downward. These gestures indicated 

that the children perceived sinking as involving movement towards the bottom of the 

water. 

 

Figure 70: The top row of photographs shows typical representational gestures used 

during the children’s discussions of floating, the bottom row shows typical 

representational gestures when discussing sinking. 

 

One interesting overall finding was that there appeared to be no gestures that were 

considered to be particularly atypical in the fully transcribed group studies or at the 

beginning and the end of all of the activities. Whilst this may seem unusual, this 

result may, in part, be explained by the highly structured nature of the activities. The 

children involved were on task throughout the activities and this may have prevented 

unusual outcomes. In terms of validity and reliability the consistency between the 

types of gestures used during the activities does appear to support the notion that 

the categories of gestures identified are meaningful. That is, they occurred regularly, 

repeatedly and independently across groups. The five categories of gesture did 

occur both in the pilot studies and in the main data collection of Research Phase 2. 

This again supports the notion that the methods used to capture the gestures were 

valid and reliable. Furthermore, the consistent re-occurrence of similar gestures 
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supports the notion that these are worthy and important aspects requiring further 

study. 

 

 8.2.9 Limitations of the Multimodal Approach 

 

The multimodal, task-based approach to studying children’s ideas is considered a 

particularly original contribution of this work to the literature exploring conceptual 

change in science. As such, there are a number of important limitations that must be 

acknowledged. Firstly, the use of gesture in science education research is not 

without criticism. Krauss (2001) proposed that the communicative function of gesture 

is still unclear and a matter of controversy. Although it is clear that gestures exist, at 

this time whether gestures are linked to language or memory retrieval is still debated. 

Roth and Lawless (2002) proposed that although it appears that gesture scaffolds 

language development, the mechanisms that underpin gesture are less well 

understood. However, despite these issues the data presented here does support 

the notion that gestures are prominent in the children’s responses and these do 

appear to have a communicative role.  

 

The storyboarding approach developed for this work can also be critiqued. 

Storyboarding was a particularly novel aspect of the work in this thesis and was 

created specifically as a means for comparing the different response types that the 

children used when discussing their ideas during the activities. As this was the first 

application of this approach to analysing multimodal data, it is difficult to say with 

certainty whether or not the method will prove to be reliable in the context of other 

studies. However, in this project it was clear that storyboarding did provide the 

opportunity to directly compare the contents of the different responses in order to 

highlight any incongruence between them (e.g. whether there was a mismatch 

between the contents of the gestures and the contents of the verbal responses). In 

addition, storyboarding did facilitate the effective summary of a large amount of data 

in one place thus making it possible to gain an overview of the group studies that 

had been fully transcribed and making it possible to effectively track any changes 

between the baseline and end assessments of children’s ideas.  
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As with the traditional constructivist approach the multimodal analysis must also 

address the criticism presented by Johnson and Gott (1996). This criticism is 

important particularly when considering the interpretation of the children’s gestures 

that was made by the researcher. It is important to consider that although it would 

have been desirable to have returned to the children in order to elicit their 

interpretation of the gestures used, that approach was not possible in this study and 

therefore the researcher was solely responsible for interpreting the gesture. Although 

Johnson and Gott highlight that it is difficult for an adult to interpret a child’s frame of 

reference, great care was taken during analysis in order to triangulate the findings 

and the researcher was able to use knowledge of both the children and the context 

of the research in order to support this. It was because of this that the researcher 

had ensured that all activities were delivered as a participant rather than by a class 

teacher. Whilst the researcher was not a fully trained teacher, there was consistency 

in the delivery of the activities and tasks across the groups studied. The researcher 

had also observed, studied and piloted the activities and tasks in consultation with 

the class teachers themselves and with reference to the research literature (Inhelder 

& Piaget, 1958; Shipstone, 1985; Howe, et al., 1990; Osborne, et al., 1991; Borges & 

Gilbert, 1999; Havu-Nuutinen, 2005). 

 

 8.2.10 Why Study Gestures? 

 

The results to the work undertaken here support the notion that a multimodal 

analysis of children’s ideas adds positively to the existing body of literature which 

aims to provide an understanding of children’s ideas for different science concepts. 

Gestures can contain additional conceptual information that is not contained in any 

other response type such as verbal or written responses and drawings and this can 

help researchers and indeed teachers to appreciate, interpret and understand the 

ideas that children have. The analyses undertaken in this project also highlight that 

the social gestures that children use can be particularly revealing about the impact 

that peers can have on children’s knowledge growth, the way that concepts are 

negotiated when undertaking collaborative work and the information that children are 

comfortable with revealing when their ideas are probed in a group context. It is 

suggested that future research should aim to incorporate such detailed analyses of 

gesture in order to provide a holistic overview of children’s ideas. It is argued that 
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gestures illuminate meaning and reduce ambiguity associated with other response 

types such as language. Gestures are a useful form of non-verbal communication 

particularly when language is under-developed. 

 

8.3 Research Question 2: Can such analyses be utilised in order 

to explore and contribute to an understanding of the 

dynamics of conceptual change? 

 

In this section what multimodality and an analysis of gesture considered alongside 

more traditional approaches to eliciting children’s ideas contribute to more theoretical 

perspectives surrounding conceptual change is discussed. In the first instance, the 

discussion returns to the earlier constructivist theorists introduced in Chapters 2 and 

3 and considers these within the context of this research. Four selected models of 

cognitive conceptual change are revisited in light of findings and it is highlighted how 

these models have been used in order to support and guide the analyses undertaken 

as part of this work. The notion of ‘hybridity’ is introduced and developed as a means 

of reconciling the results to the work.  

 

 8.3.1 The ‘Early Years’ 

 

As outlined earlier in this thesis, the early European constructivists such as Piaget 

(1929) and Vygotsky (1978) played a vital role in establishing constructivism as a 

way of understanding how and what children learn. These important theorists 

proposed for the first time the active nature of knowledge construction and the ways 

that this could be influenced by internal mechanisms and social environment. This 

language of constructivism has been far reaching and has shaped the ideas of 

contemporary constructivism as it is understood within science education today 

(Driver et al, 1994). Furthermore, the work of these two important theorists also 

underpinned the later work of the North American constructivists and Ausubel in 

particular (1968, 1978). Ausubel’s work provides an appropriate foundation for the 

findings drawn from this work. Ausubel proposed that language as a lone medium 

may not be enough to assess and measure children’s knowledge, especially if 

researchers and teachers were to understand fully the ideas that children have:  
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“Prior to being verbalised, new concept meanings also typically exist for a 

short while on a subverbal level – even in sophisticated older learners.” (1978, 

p.105) 

Such a notion resonates with the work in this thesis which adopts the principles of 

multimodality and present evidence that knowledge can be held and indeed 

demonstrated in a range of different ways including through gesture. The results of 

the work undertaken here do reflect some of the overarching principles of global 

constructivist, for example, in agreement with Piaget (Inhelder & Piaget, 1956) the 

younger children were not able to further develop their ideas from the conceptual 

challenge tasks. These findings could be interpreted as a result of the children not 

being at an appropriate developmental level in order to learn the more complex 

concepts. There was also some evidence of both assimilation and accommodation in 

the data presented (Piaget, 1929). In terms of Vygotsky’s theories (1978), there was 

evidence of social interaction supporting learning in the groups and indeed such 

social construction of knowledge underpins the dialogic teaching approach adopted 

in this work (Wells, 2011; Alexander, 2004). Finally, there was evidence of Ausubel’s 

ideas in the results to this work. The children did show evidence of ideas that were 

not represented in their speech and this evidence did highlight the potential for the 

children’s ideas to be misrepresented in the final analyses if the gestures were not 

accounted for. However, the results were so far reaching that no discrimination was 

possible suggesting that although these global theories are useful they are not 

specific enough to permit the detailed analysis required by this work. 

 

Despite early criticism regarding the difficulties of accessing children’s ideas, early 

constructivist views gave way to a more domain-specific view of learning (e.g. 

science as a subject) introduced by Driver and Easley (1978) and later championed 

by Driver (1995). Driver’s view that children already entered the science classroom 

with pre-existing ideas about the science topics that they were studying promoted 

the notion that learning was perhaps best conceived of in terms of conceptual 

change. The notion of change led to the emergence of the alternative frameworks 

movement and subsequently to the publication of a number of different theoretical 

models to account for findings. Alongside this development was acknowledgement of 

the ontological assumption that children have their own ideas about the world in 

which they live and the epistemological assumption that it is possible to explore, 
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measure and record these, to classify them, and to track the changes in them as 

they develop. Of all the contemporary models of conceptual change available today 

(see Figure 9; Table 3), four were selected as having achieved prominence and 

worthy of further exploration: Vosniadou and Brewer (1987), diSessa (1988), 

Karmiloff Smith (1992) and Luffiego, et al. (1994).  

 

8.3.2 Conceptual Change: A Comparison of the Traditional and the 

Multimodal Approach 

 

In order to undertake the traditional analysis three of the four models of conceptual 

change that were selected in Chapter 3 were applied (diSessa, 1988; Vosniadou and 

Brewer, 1987; and Luffiego, et al., 1994). Vosniadou’s approach to conceptual 

change highlighted the importance of using children’s responses in order to tap into 

the underlying mental models that were being applied in response to science tasks. 

As previously discussed, according to Vosniadou conceptual change takes place 

when the mental models that a child uses is altered, this can be at a weak or a 

radical level (Vosnidaou & Brewer, 1987, see Chapter 3 for further details). This 

particular model guided the analytical approach applied during the framework 

analyses undertaken in Chapters 6 and 7. Fundamentally, according to this model of 

conceptual change it should be possible to highlight knowledge development if the 

frameworks of understanding that the children use differ and develop throughout the 

course of the practical activities and by exploring differences in frameworks between 

the three age groups it should be possible to infer how knowledge develops over 

time. Vosnidaou’s framework can be considered to assess concepts at a ‘coarse’ 

grained level, largely because this approach refers to ‘theory’ style structures. In 

contrast diSessa’s (1988) important work highlights that knowledge change and 

growth can take place at a ‘finer’ grained level. When applying diSessa’s work to the 

issue of conceptual change the importance of studying the links between more 

detailed pieces of information is highlighted, therefore, this approach also influenced 

the analytical framework applied and a theme analysis of the children’s ideas for the 

two concept areas studied was undertaken. The theme analysis permitted the 

researcher to interrogate concepts at the finer grained level required and explore the 

links that children were making in detail both at the beginning and the end of the 

tasks. Finally, Luffiego’s work (1994) was used as an overarching framework in order 
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to provide a non-linear explanation for why some children changed their ideas in the 

ways that they did, why some children did not and why some children showed 

evidence of knowledge regression as evidenced in Chapter 6 and 7.  

 

As discussed previously, in order to explore Vosnidaou’s model of conceptual 

change it was important to assess the children’s ideas in terms of the frameworks of 

understanding that they showed for the different concept areas (electricity and 

floating and sinking). The work discussed here used the frameworks that had already 

been established in the literature (Osborne et al, 1991, for electricity and Havu-

Nuutinen, 2005, for floating and sinking), however, in the case of the floating and 

sinking activities the existing frameworks drawn from the literature required 

additional development in order to accommodate the range of ideas generated by 

the children participating in this project. The results drawn from the electricity 

activities appeared to show some support for Vosniadou’s proposal that conceptual 

growth can be perceived as a change in the frameworks or mental models of 

understanding that children demonstrate for science concepts. Referring back to 

Table 19, the framework analysis revealed that across all three age groups some 

children demonstrated evidence of radical restructuring of ideas following tuition, with 

some children appearing to change the framework that they were applying between 

the beginning and the end of the activities. The framework approach to analysis was 

useful as it helped to show how ideas had progressed both within and between the 

three groups of children during the research project. Importantly, this analytical 

approach demonstrated evidence that the older children’s ideas became more 

scientific over time (e.g. between Year 2, Year 6 and Year 9) and in some cases 

became more scientific over the course of the research activities.  

 

Similar results were evident in the floating and sinking data (Table 57), which 

demonstrated that with the exception of the Year 2 children, some children did 

appear to change the frameworks of ideas that they were applying at the beginning 

and the end of the activities. Interestingly, in this work, there was no evidence of a 

change in the frameworks used by the Year 2 children after the conceptual challenge 

task even though this was applied in a collaborative group context. These results 

contrast with previous findings that had suggested that provided groups were 

structured to permit discussion children’s ideas could be changed (Howe, et al., 
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1991; Havu-Nuutinen, 2005). However, it is important to note that the children in 

Howe, et al.’s study were older than the Year 2 sample in the current work and 

Havu-Nuutinen’s work focused on just 10 younger children but sought to teach 

density rather than an appreciation of forces. Thus the results may be been specific 

to that sample or to density concepts. It could also be proposed that the ‘global’ 

forces concepts introduced in the current work were too advanced for the Year 2 

children in this study and although at the time of tasks the children may have been 

able to apply the concepts they may have found it difficult to reconcile these with the 

frameworks that they already held. Perhaps it is possible that these were concepts 

that the children may have been reluctant to believe (Driver & Bell, 1986), or as 

Luffiego, et al. (1994) highlighted this study may have captured the unanticipated 

outcomes that can occur when children are learning new information in the science 

classroom. Overall, the application of the Vosniadou’s approach to conceptual 

change was helpful for tracking changes in the overall ‘theories’ that children had for 

the two science concepts, however, because the changes were measured using 

frameworks it was difficult to tell how these ideas had moved forward and which 

were the important concepts that had facilitated this change. In order to begin to 

explore the changes in more detail the ‘finer grained’ model proposed by diSessa 

(1988) was also applied in this study.  

 

It was proposed that exploring the themes that children discussed at the beginning 

and the end of the tasks was helpful for revealing some support for diSessa’s model 

of conceptual change (1988). According to diSessa’s model it is important to map the 

different links that are made between individual pieces of information or p-prims (see 

Chapter 3 for full details and Chapters 6 and 7 for a fuller discussion of the results to 

this work). The results drawn from the electricity data (Table 18) demonstrated that 

some children showed evidence of making new links between different concepts. For 

example, following conceptual challenge, some Year 6 children began to make links 

between the p-prims power and energy. These results suggested support for the 

proposal that this work had been successful for capturing conceptual change at this 

level. Interestingly the results for floating and sinking activities revealed no change in 

the links made between individual ideas as assessed by theme analyses in the 

youngest children’s (Year 2) definitions of what they thought was meant by the terms 

floating and sinking (Tables 55 and 56). These findings may be due to the children’s 
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ages or because the conceptual change task introduced concepts that were entirely 

novel to these children, therefore they found it difficult to add these into their existing 

ideas. There was evidence of conceptual change at p-prim level (diSessa, 1988) in 

both the Year 6 and the Year 9 children. Interestingly these results showed that the 

Year 6 children were able to discuss the new ideas introduced in terms of the 

themes included in their ideas of what electricity is. Similar findings were evident in 

the Year 9 children. These results as a whole supported the use of the conceptual 

challenge task and the application of diSessa’s model of conceptual change. In 

addition, the overarching framework provided by Luffiego, et al.’s model (1994) 

helped to provide support for why some children changed their ideas and some did 

not. According to Luffiego’s model the children’s existing ideas and experiences 

heavily influence what, if any, learning can occur and this can make the outcomes 

unpredictable. However, there was evidence of new links being made between p-

prims for both the Year 6 and Year 9 children. For example, some Year 6 children 

began to use the terms ‘upthrust’ and ‘gravity’ in their discussions and these had not 

been present during the baseline testing. These results may highlight the links being 

made between already existing p-prims and the new ideas about forces that were 

introduced during the sessions. One problem with this approach to analysis was that 

although it was possible to highlight that some children had changed their ideas and 

to show how the new ideas had been linked together, it was not clear how these 

ideas had changed during the course of the activities. It could have been that the 

children had made many revisions to the links between concepts as they worked 

through the different tasks but that these were not captured by merely measuring 

ideas at the beginning and the end of the activities. Therefore this made responding 

to the models of conceptual change particularly difficult, it was clear that there was 

some evidence of change but this evidence could still be interpreted into all three 

models of conceptual change discussed so far, albeit at different levels depending 

on the ‘grain size’ studied.  

 

As discussed earlier in this chapter and in previous chapters, the work presented 

here also utilised a new and innovative multimodal, task-based approach to studying 

the development of children’s ideas in order to explore what if anything, this form of 

analysis could add to the conceptual change literature. In order to undertake this 

analysis timeline diagrams were developed using the work of Givry and Tiberghein 
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(2012). In the earlier methodology chapters (4 and 5), it was proposed that by 

utilising such an approach it may be possible to capture and map the dynamic 

processes of conceptual change as they unfolded in ‘real time’.  This was achieved 

as evidenced in the development of timeline diagrams, one of which containing 

further annotations is shown in Figure 71. This particular approach to analysis drew 

heavily on the work of Karmiloff-Smith (1992) who had highlighted that a significant 

part of children’s knowledge growth was moving concepts through different levels or 

representation until they became accessible to verbal responses. Karmiloff-Smith’s 

model of conceptual change, discussed in more detail in Chapter 3, proposed that 

some ideas are accessible only through non-verbal representations particularly when 

these are in the early stages of formation. It was proposed that by analysing the data 

using an approach that focused on the gestures as well as the language that children 

used it may be possible to unpick aspects of the four models of conceptual change in 

order to assess their effectiveness for explaining the data generated in this study. As 

highlighted earlier in Chapter 3, there are number of issues with comparing the 

literature on conceptual change to date. These include the use of different age 

groups, different science topics and different methodologies, different 

conceptualisations of conceptual change, and language (diSessa et al, 2004; 

diSessa, 2006). In order to overcome this difficulty, this work aimed to evaluate the 

models of change using a bottom-up process.  
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8.3.3 Gesture and Conceptual Change 

 

Whilst storyboarding was used to capture and compare different response types 

within the different science activities adopted, storyboarding alone could not provide 

sufficient information about conceptual change dynamics. In order to provide this 

level of detail it was necessary to develop a timeline diagram that might capture the 

different concepts that children used as they evolved over time. The timeline 

diagrams presented build on the work of Givry and Tiberghein (2012). In this 

important work, Givry and Tiberghein indicate how the complexity of the networks of 

concepts that children use when in science lessons can be illustrated. As with 

storyboarding, this approach did appear to have great utility for enabling the 

researcher to pinpoint how and when changes in the ideas presented did occur.  

 

As indicated earlier, timeline analyses proved essential to studying conceptual 

change.  Part of this change involved a detailed analysis of gesture and its 

contribution.  The timeline analysis presented in Figure 71 highlights the significance 

of this analytical approach and the nature of the gestures captured. Figure 71 shows 

the timeline and its related concepts, some photographs of the gestures produced by 

the children when each of these new concepts was introduced, and notes proposing 

how the children’s ideas have evolved. The photographs and concept maps are 

matched and numbered.  

 

Following the timeline diagram it can be seen that the children initially used a single 

concept in order to explain what they thought floating and sinking was (1). This 

concept was associated with a related representational gesture that provided 

additional information not contained in their speech. Notably, Daniel’s gesture 

highlighted how the object explored behaved in the water. This single concept idea 

was extended to included additional information (2) and again was accompanied by 

a representational gesture which this time shows how Daniel thought a sinking object 

would behave. In terms of change this could illustrate evidence of a weak form of 

conceptual change as the core concept (e.g. the location of the object in the water) 

remains central to the discussion. The evolution of the children’s ideas continued to 

adopt what could be perceived as a weak form of conceptual change supported by 

gestures that extend the meaning contained in speech (3, 4, and 5). The evolution of 
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ideas mapped in this diagram went on to reveal increasing levels of complexity in the 

children’s responses. Interestingly, however, during the further testing of objects the 

children introduced a new set of concepts. The children began to associate the 

floating and sinking activity with a method for testing the weight of the object (6). This 

point marked a departure from the concept previously used and may provide 

evidence of knowledge fragmentation. The children then returned to a discussion of 

object properties but this time with new ideas not previously represented (7). New 

concepts were introduced again (8, 9). The timeline then appears to mark a point of 

more radical restructuring (10, 11).  Here, the children ceased discussing just the 

object properties in their ideas of floating and sinking and began to discuss how 

‘water holds the object up’. This discussion revealed a new concept introduced 

during the conceptual challenge task but not discussed by the children before. 

Interestingly, there is also evidence of a change in the representational gesture that 

Daniel used when discussing floating. By comparing gestures (1-10), it is possible to 

see that he had changed the orientation of his hand from palm facing downward to 

palm facing upwards. This subtle but important change in gesture may be a non-

verbal cue to the changes that have occurred in his ideas. Finally, the children now 

only discussed floating and sinking by applying a forces framework (11). It is 

suggested that by using timeline diagrams like this it is possible to map out how and 

when children begin to use new ideas in their discussions and this can reveal when 

there are changes both at a fine grained level (e.g. in the gestures that the children 

use) and at a more coarse grained level (e.g. in the frameworks of explanation that 

the children use for the phenomena being discussed).   

 

It is proposed that the analysis of gesture is fundamental for uncovering the 

sometimes finer grained distinction between the models that children use when 

discussing their ideas (Taber, 2008). In the conclusion to Chapter 6 it was 

highlighted that in some cases it was only through attending to the gestures that it is 

possible to pinpoint the underlying models of understanding applied. Furthermore, 

the analysis of gesture facilitates the identification that some children may use more 

than one model of understanding depending on the context of the questions or the 

tasks in hand. In the example presented in Chapter 6, it was clear that Daniel used 

one model of understanding when discussing his ideas about electricity when using 

a simple circuit containing one battery and one bulb, and another model when 
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discussing a circuit contain one battery and two bulbs (Table 48, Figure 42). This 

particular finding not only supports the findings from previous literature (Shipstone, 

1985; Osborne, et al., 1991), it highlights the importance of studying gesture 

alongside their other response types even when verbal responses may remain 

consistent. 

 

While timeline diagrams were fundamental for enabling the effective mapping of how 

the children’s ideas evolved during the activities one important criticism of this 

method was presented by Givry and Tiberghein (2012) who highlighted that the 

results contained in such diagrams cannot be extrapolated to other children. Thus 

the diagrams contained in this thesis can only map the ideas of the children studied 

in those groups and not other children outside of this work. However, despite this 

limitation, Givry and Tiberghein (2012) also state that one advantage of this 

approach is that it can be used to generate ideas that can be subjected to further 

testing with other groups of children. In the context of this work, this means that the 

results in the timeline diagrams can be tested for their validity and reliability in future 

samples in order to explore whether the patterns of conceptual change uncovered 

are typical. 

 

The timeline diagrams appear to illustrate that all of the four models of conceptual 

change employed by this work in order to guide the different levels of analysis 

undertaken appear to have some utility when exploring children’s ideas. It could be 

suggested that perhaps one approach to understanding these results and the 

application of each of these models at different levels is to explore the notion of 

hybridity, whereby a single model of conceptual change that utilises important ideas 

from the four discussed in this work is applied in one coherent framework. 
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Figure 71: A timeline analysis of the Year 6 floating and sinking group study, further annotated to show how and when changes in 

ideas occur.
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 8.3.4 A Development of Ideas: Hybridity 

 

Perhaps one feasible explanation which could account for the findings presented 

here, namely the application of four existing models of conceptual change, is the 

notion of ‘hybridity’ and a ‘hybrid model of conceptual change’.  A hybrid model of 

conceptual change seems appropriate particularly if the initial mapping of ideas 

takes the basis of diSessa’s p-prims (1988). These new concepts are mapped in 

isolation to specific stimuli. Such stimuli may not always be available for verbal report 

and may therefore only be identifiable when analysing gesture alongside the verbal 

reports given. Thus Karmiloff-Smith’s (1992) views are essential. Once further 

experience is gained, these p-prims begin to evolve using both weak and radical 

processes (Vosniadou & Brewer, 1987) once ‘theory-like’ structures begin to form. 

Sometimes, for example, new information is merely added to the p-prim giving rise to 

weak changes. At other times, however, the new information forms the core of the 

concept and the existing p-prim becomes attached as a minor component giving rise 

to more radical changes. As shown in the findings from this work, it was not always 

possible to predict when the children would change their ideas even when the 

gestures of the children were compared to their verbal responses (Goldin-Meadow, 

et al., 2003). This finding can be explained by Luffiego, et al.’s model of conceptual 

change involving chaotic systems (1994). Luffiego’s work proposed that the brain like 

any other non-linear and dynamic system is sensitive to certain initial states (e.g. 

previous experiences and learning) and as such the outcomes of tuition are 

unpredictable. This work is fundamentally important because it highlights why 

learning is often slow, incomplete and sometime inaccurate. These findings were 

evident in this work. Similar findings which have supported the notion of the 

application of chaos theory to the science classroom have been presented by Bloom 

(2001) and Sharp and Kuerbis (2006). There is also growing evidence from the 

neurosciences to underpin these constructivist learning ideas (Anderson, 1992, 

1997, 2009).  

 

Although such a hybrid model may at first glance appear purely speculative, other 

studies have alluded to the same (e.g. Taber, 2008). Fundamentally, Taber 

proposed that the differences between the two competing models proposed by 

Vosnidaou and diSessa may be related to ‘grain size’, and that both models may be, 
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as here, combined in order to explain how conceptual change occurs in more detail. 

According to Taber in the first instance, pieces of information need to be created. 

These then become organised into theory-like structures and are subsequently 

subject to weak and radical conceptual change. The overall results from the current 

work did reveal interesting patterns of development in terms of the typical changes 

that were observed between the different age groups that may be subsumed under 

just such a hypothesis. For example, if and as this work does, change is being 

measured through a timeline analysis, each additional concept can be considered a 

‘small-grain sized’ piece of information and it could be suggested that changes occur 

through the links being made between diSessa’s p-prims. However, if the 

comparison is at the level where entire frameworks of ideas are being measured (as 

with the beginning and end of activity comparisons provided in Chapters 6 and 7), 

these represent ‘larger grains’ and Vosnidou’s views of weak and radical 

restructuring can be applied in order to explain the findings.  

 

In order to unpack this proposal, further evidence is drawn from this work. Outcomes 

revealed that ideas about electricity progressively moved towards more scientific 

concepts as the children got older. The youngest children often focused their 

discussions on the effects of electricity rather than the characteristics of electricity 

itself, whilst the older children discussed electricity as current that powered objects. It 

was noted that during the practical activities all three age groups of children 

appeared to understand the principles demonstrated in the conceptual challenge 

aspect of the task (namely, the metaphorical use of smarties to represent the 

movement of electrons in a circuit). However, when probed at the end of the activity 

only the older children (Year 6 and Year 9) actually showed evidence of changing 

their ideas, weakly and radically. For example, some Year 6 children demonstrated 

weak forms of restructuring by including the term ‘energy’ in their discussions. As 

well as evidence of weak restructuring, there was also some evidence of radical 

restructuring with some children completely changing the focus of their ideas to 

centre on the notion of electricity as a flow of electrons. A clear example of such 

radical changes in conceptual structure can be seen in the timeline analysis 

presented in Chapter 6. What was perhaps more interesting was that although there 

was evidence that the changes could be applied within Vosniadou’s ideas of 
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conceptual change, the more minor changes evident could easily have been 

explained by diSessa’s notions of conceptual growth. 

 

Similarly, outcomes evident from the floating and sinking data revealed that the more 

scientific ideas were presented by the older children. In the initial elicitation phase a 

dichotomous relationship between floating and sinking was presented by the 

youngest children. As with electricity, although all three age groups of children 

appeared to appreciate the new scientific principles presented during the conceptual 

challenge aspect of the task (namely, pushing an inflated balloon into the water) and 

were able to contribute to discussions at the time, only the older children appeared to 

show evidence of change in their ideas elicited during the final probes. Examples of 

changes in ideas once again appeared to reveal evidence that could be explained by 

Vosniadou’s framework of weak and radical restructuring. However, examples could 

also be explained through the application of diSessa’s framework of how ideas 

develop and change. However, in this study there is also evidence that some of the 

children’s knowledge does appear to be contained in gesture but is not articulated in 

other ways. This finding is congruent with Karmilloff-Smith’s model of conceptual 

change which proposes that children’s ideas can be portrayed within different modes 

of representation. Notably, some knowledge is held in action and must be re-

represented before it is available for verbal report. Such findings may not have been 

previously highlighted in the research literature as they required a multimodal 

approach in order to capture the gesture data. Figure 71 shows how children 

frequently included addition information in their gestures that was not represented in 

any other response type. Figure 71 can also be used to highlight points of weak 

restructuring (1, 2, 3, 4 and 5), the possible development or use of new p-prims (6, 7, 

8 and 9) and evidence of radical restructuring (comparison of the contents of 5 and 

10).  

 

The findings from of this work highlight that a multimodal approach can be effectively 

used to map the dynamics of conceptual change and contribute to these debates. 

However, as with previous conceptual change research, one overarching caveat 

remains; although the changes can be mapped research such as this cannot 

specifically highlight the underlying mechanisms that support such changes. In order 

to address this limitation it is proposed that this research should be considered 
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alongside the neurological evidence presented by Anderson (1987, 1992, 2009) 

which has proposed a number of mechanisms in the brain that demonstrate support 

for constructivist ideas. It is also important to highlight that in this study only four of 

the most prominent models of conceptual change were investigated, as highlighted 

in Chapter 3, many more models exist and these other models may also have some 

utility. However, despite the vulnerability that this limitation places on this work, it is 

proposed that the results are largely congruent with previous conceptual change 

analyses and the notion of hybridity introduced by Taber (2008). Finally, one last 

critique can be drawn from pivotal work of Linder (1993). Linder presented an 

important challenge to the notion of conceptual change and proposed that perhaps it 

was better to conceive of such changes in ideas as a form of ‘conceptual 

appreciation’. Linder also highlighted the importance of context and proposed that 

“appropriateness of conceptualisation requires a context” (p.296). Furthermore, 

Linder stated that the approach whereby the aim is to change children’s ideas may 

be flawed and that it is perhaps better to teach children which context are 

appropriate for different ideas.   

 

8.4 Research Question 3: Do outcomes from the work in this 

thesis have any classroom application? 

 

As with any research project undertaken in a professional setting, it is important to 

consider the potential implications that outcomes may have for practice. One aim of 

this research was to produce work which might be helpful in the classroom. Although 

it can be suggested that the emergence and novelty of multimodality means that it 

has yet to be applied and tested in different contexts, initial findings appear to 

support a real need to begin to explore multimodality in real world settings. For 

example, Ausubel (1978) warned against a now common over-reliance on words 

alone when assessing children in the classroom. Indeed, Ausubel proposed that: 

“Since there is often a time lag between the correction of misconceptions and 

the revision of language usage, it cannot be assumed that conceptual 

confusion necessarily exists in all instances where words are used 

inappropriately.” (Ausubel, et al., 1978, p.104) 
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Even though Ausubel was discussing the lag between language and the 

development of ideas some time ago, there remains considerable scope for the 

application of his work in today’s schools. It is suggested that an emphasis on 

language that is evident in teaching and learning, assessment and the curriculum 

today may overlook the importance of exploring other means of communication. 

Whilst is it is commonplace in the early primary years for children’s drawings to be 

used as evidence of learning this application in assessment tails off in older 

children’s educational experiences (for example see assessment guidance for 

primary Harlen, 2012; and for secondary TLRP, 2009). The research presented here 

supports a view that there may need to be more scope within teaching and learning 

and particularly assessment for children to operate more multimodally. Assessment 

processes in particular can be heavily reliant on written responses and it could be 

argued that open video recorded discussions such as those used in this research 

may provide an alternative and more effective approach to assessing children’s 

knowledge and the effectiveness of tuition. The approaches that children take when 

undertaking tasks of various sorts can be revealing and the interaction between 

children during tasks can also be informative when considering their understanding 

of complex science concepts. Teachers may also welcome such alternative methods 

of assessment as these may prove fruitful in relieving the stress that can be 

associated with written tests.  On the other hand, the highly technical, multimodal, 

task-based approach here may prove time consuming and require training.  

 

The dialogic teaching adopted in this work appeared effective in helping the children 

to discuss their ideas. Dialogic teaching has been strongly supported in the more 

recent teaching and learning literature and has been supported in science education 

(Alexander, 2004; Fisher, 2007; Lyle, 2008; Mercer et al, 2009; Heneda & Wells, 

2010). It is considered advantageous over other forms (e.g. didactic) because of its 

ability to not only probe children’s ideas effectively using different questioning 

strategies but has been shown to support children’s learning because of its 

discursive nature in which children are able to work out their own ideas through talk 

in the classroom context.  

 

Furthermore, and in line with previous constructivist models of teaching (e.g. Driver 

1989), this work has shown evidence that when working with older children 
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introducing a conceptual challenge task can progress children’s and help them to 

learn new concepts (e.g. Ogborn et al, 1996). Despite criticisms of constructivist 

models of teaching (Airasian & Walsh, 1997; Millar, 1989; Matthews, 2003; Taber, 

2006) the work in this thesis, however, does offer some support for the adoption of a 

constructivist-based approach that directly challenges children’s ideas, particularly 

for the older children. 

 

Finally, considering learning in the classroom it could be argued that greater 

attention needs to be directed towards children undertaking practical activities as 

these do offer a unique opportunity to understand what they know and can do.  The 

success of challenging ideas through practical activities here has certainly provided 

a fruitful avenue for considering alternative teaching strategies. Such a proposal has 

implications for curriculum development particularly as this may require the inclusion 

of greater scope for more hands on experiences. Previous research has highlighted 

the importance of practical work in science classrooms (Gott & Duggan, 1996; 

Wellington, 1998; Wickman & Ostman, 2002; Hogarth et al, 2005; Millar, 2010). 

However, research has also shown that in some cases practical work may not be 

effective if it is not sufficiently planned (Abrahams & Millar, 2008). That said it is also 

important to remember that some science teachers, particularly in primary schools, 

have difficulty coping with the subject matter and may lack the confidence to take a 

similar approach to tuition as was developed in this work (Ofsted, 2008; Boyle & 

Bragg, 2005; Ritchie, 1996; Holroyd & Harlen, 1996; Russell et al, 1995; Osborne & 

Simon, 1996; Russell et al, 1992). 

 

8.5 A Multimodal Research Lens and Conceptual Change in 

Science Education 

 

In this thesis, a new and innovative multimodal, task-based approach to studying 

children ideas in science was presented. The work detailed in these chapters began 

by reviewing, evaluating and critiquing a substantial and influential body of research 

aimed at documenting how children’s ideas across different science concepts 

develop and change over time and the various models of conceptual change arising.  

This work provided necessary background and context for the multimodal 



364 

 

perspective subsequently developed and to take this body of research forward. It 

was argued that multimodal research attends to different types of communication 

such as gesture when exploring children’s ideas.  Combined with more traditional 

approaches, findings point to a productive and insightful union at least as applied 

across the three age groups of children in the schools involved.  There is no 

immediate reason to assume that the multimodal, task-based approach would not 

have more widespread value.   

 

In addition to adopting a dialogic approach to teaching electricity and floating and 

sinking, and eliciting children’s ideas, new methods or analytical tools were 

introduced including storyboarding, timeline diagrams and using NVivo to analyse 

and manage the data set obtained.  Within the overall design and its limitations, 

these, it was argued and evidenced, proved effective, valid and reliable, particularly 

when considering instigating and capturing the dynamics of conceptual change. The 

gestures that the children produced during the tasks were categorised according to 

their content into a new typology. The prevalence of gesture types varied with age 

suggesting that sometimes children used them to support discussions when they 

found it difficult to articulate their ideas by other means. In addition to proposing a 

new typology of gesture in science education, findings were also used to capture the 

dynamics of conceptual change making an important contribution to theoretical 

perspectives and ‘hybridity’ in science education as a whole. It was proposed that 

the results from this study may have implications for classroom practice. Most 

notably, these implications support a view that there should perhaps be more 

opportunities for children to use a range of communication strategies when 

discussing their ideas in the classroom. 

 

In response to the overarching research question raised it is argued that it is possible 

to apply a multimodal research lens to the issue of conceptual change in science 

education research. It is proposed that this approach provides a more holistic 

understanding of children’s ideas and how they change both during the course of 

single teaching incidents and over time between age groups. Further research 

considering a multimodal lens applied to science education and the issue of 

conceptual change would appear to have merit, particularly with regard to exploring 

and testing the notion of ‘hybridity’ in cognitive models of conceptual change while 
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not forgetting the social and affective dimensions. Further work might be usefully 

directed towards exploring the application of a multimodal task-based approach with 

other age groups including, for example, GCSE, A-level and university students, 

trainee teachers and science educators in quasi-experimental, longitudinal and other 

studies. 

 

Finally, in this thesis I have argued that an analysis of gesture alongside other 

response types supported by the multimodal research lens is important if both 

researchers and teachers are to have a holistic understanding of children’s ideas in 

science. Gestures can illuminate aspects of knowledge that are not contained in any 

other response type, for example spoken and written language and drawings. 

Understanding the content of gestures can reduce the ambiguity that can be 

associated with those other response types and this approach is particularly helpful 

for understanding the ideas that children have if their language is under-developed. 

Furthermore, analysing gestures can reveal some of the processes associated with 

learning science concepts at a deeper level. In this thesis it has been argued that the 

analysis of gesture alongside the other responses types had great utility for exploring 

the predictions made by the four models of conceptual change studied in this work. 

Indeed it is proposed that this approach has facilitated those four models to be 

incorporated into a coherent framework that can be used to predict concept learning 

and development across a range of levels from fine to coarse grain. Gestures also 

offer a window of opportunity to explore the social aspects of learning in the 

classroom environment. 
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Appendix A – Worksheet for electricity 
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Electricity 

 

Complete this picture to make the bulb light 

       
 

 

 

           
 

 

 

 

 

 

 

 

 

The bulb lights because……………………………………………………………………………………………………………….. 

 

 

 

…………………………………………………………………………………………………………………………………………………….. 

 

 

 

…………………………………………………………………………………………………………………………………………………….. 

 

 

 

…………………………………………………………………………………………………………………………………………………….. 
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Electricity 

 

Complete the diagram to make the bulb light and label the symbols 

       

 
 

 

 

 

 

 
 

 

 

 

 

           

 

The bulb lights because……………………………………………………………………………………………………………….. 

 

 

 

…………………………………………………………………………………………………………………………………………………….. 

 

 

 

…………………………………………………………………………………………………………………………………………………….. 

 

 

 

…………………………………………………………………………………………………………………………………………………….. 

 

 



Appendix B – Worksheet for floating and sinking 
 

 

 

Floating and Sinking 

 

 

Draw something floating and something sinking. 

 

Things float because………………………………………………………………………… 

 

 

………………………………………………………………………………………………………… 

 

 

………………………………………………………………………………………………………… 

 

Things sink because ………………………………………………………………………… 

 

 

………………………………………………………………………………………………………… 

 

 

………………………………………………………………………………………………………… 
 


